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Abstract. Similarity measurement theories play an increasing role in GIScience 
and especially in information retrieval and integration. Existing feature and 
geometric models have proven useful in detecting close but not identical con-
cepts and entities. However, until now none of these theories are able to handle 
the expressivity of description logics for various reasons and therefore are not 
applicable to the kind of ontologies usually developed for geographic informa-
tion systems or the upcoming geospatial semantic web. To close the resulting 
gap between available similarity theories on the one side and existing ontolo-
gies on the other, this paper presents ongoing work to develop a context-aware 
similarity theory for concepts specified in expressive description logics such as 
ALCNR.  

1   Introduction and Motivation 

Within semantic-based geographic information systems and the upcoming geospatial 
semantic web, ontologies will play a crucial role in semi-automatic information re-
trieval, integration and concept matching. Two approaches turned out to be useful to 
support these tasks: subsumption reasoning and similarity measurement.  

The idea behind subsumption-based retrieval as described by Lutz & Klien [1] is to 
rearrange a queried application ontology taking a search concept into account and to 
return a new taxonomy in which all subconcepts of the injected search phrase satisfy the 
user’s requirements. However, using subsumption reasoning to query knowledge bases 
forces the user to ensure that the search concept is specified in a way that it is neither 
too generic and therefore at a top level of the new hierarchy nor too specific to get a 
sufficient result set. In fact the search concept is a formal description of the minimum 
characteristics all retrieved concepts need to share. Moreover no measurement structure 
is provided answering the question which of the returned concepts fits best. Yet this is 
not necessarily a critical point within this approach because all subconcepts at least 
share the demanded properties. In contrast, similarity computes the degree of overlap 
between search and compared-to concept and as measurement structure provides a 
(weak) order. Both characteristics turn out to be useful for information retrieval and 
matching scenarios: on the one hand the determination of conceptual overlap simplifies 
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phrasing an adequate search concept and on the other hand the results are ordered by 
their degree of similarity to the searched concept. Similarity-based retrieval does not 
necessarily imply a subsumption relation between search and compared-to concept; in 
some cases even disjoint concepts may be similar to each other (e.g. Mother, Father). 
In opposite to subsumption-based retrieval, the search phrase typed into the system is 
not an artificial construct, but the concept the user is really looking for in the external 
ontology. The result set describes the measured overlap between compared concept 
descriptions without presuming that they share a specific property.  

In other words the benefits similarity offers during the information retrieval phase, 
i.e. to deliver a flexible degree of conceptual overlap to a searched concept, stand 
against shortcomings during the usage of the retrieved information, namely that the 
results not necessarily fit the user’s requirements. To make the difference between 
both approaches more evident (see figure 1), one could imagine a search phrase speci-
fied using a shared vocabulary to retrieve all concepts which’s instances overlap with 
waterways. In contrast to the subsumption-based approach, similarity measurement 
will additionally deliver concepts which’s instances are located inside or adjacent to 
waterways and indicate through a lesser degree of similarity that these concepts are 
close to, but not identical with the user’s intended concept.  

 

Fig. 1. Similarity (a) and subsumption (b) - based retrieval using a shared vocabulary  

Similarity measurement has a long tradition in cognitive science and meanwhile 
also in computer science and has been applied to various information retrieval scenar-
ios within GIScience for the last years [2-5]. An overview about existing similarity 
theories, their application areas and characteristics, is out of the scope of this paper and 
recently presented  in [6, 7]. Instead we focus on briefly discussing why yet another 
similarity theory is necessary. Following the above argumentation, similarity supports 
users and software agents during information retrieval; however this presumes that the 



 Sim-DL: Towards a Semantic Similarity Measurement Theory 1683 

chosen similarity measure does not only satisfy the user’s requirements, but also sup-
ports the representation language of the inspected ontology. It turns out that, besides 
the fact that several similarity theories make fundamentally different assumptions 
about how and what is measured (e.g. feature versus geometric model [6]), most of 
them come with their own proprietary knowledge representation format. In contrast, 
the majority of ontologies is specified using standardized or commonly agreed logic-
based knowledge representation languages and especially various kinds of description 
logics. Without claiming that logic-based representation is the adequate tool for con-
ceptualization and reasoning, we observe a gap between available similarity theories 
and existing ontologies which opposes a wider application of similarity measures as 
part of GIS or semantic-enabled web services in general.  

In addition, several proprietary knowledge representation formats brought along 
with existing similarity theories lack of a formal semantic and language constructs 
proven to be useful for conceptualization, such as disjunction, negation, value and 
existential restrictions, number restrictions (cardinalities) and roles (binary predicates) 
in general. This is a crucial point because, at least in computer science, the concepts 
between which similarity is measured are representations1 of the concepts in our 
minds. Consequently, the lack of a precise and expressive representation language has 
impact on the quality of the resulting similarity assessments as discussed in [8] for the 
lightweight ontology underlying the feature-based MDSM theory [4]. The same ar-
guments hold for geometric approaches to similarity, based on Gärdenfors’ [9] idea of 
conceptual spaces. To integrate relations and hence improve the expressivity of con-
ceptual spaces for similarity measures, Schwering [10] for instance combines the 
geometric approach with classical network models. 

In comparison to independently developed similarity theories for logic-based 
knowledge representation, such as discussed in [11] for similarity between web ser-
vices or an approach to measure maximum dissimilarity between concepts represented 
in ALC [12], the theory introduced within this paper measures the overall similarity for 
the high expressive description logic ALCNR. Moreover it supports a (basic) notion of 
context and conceptual neighborhood models, which are necessary to handle spatial 
and temporal relations. However, as will be discussed in the future work section, to 
capture the full extent of geospatial knowledge, even more expressive description lo-
gics are necessary [13]. For further work concerning similarity measures between 
logic-based representations see also [14, 15]. 

2   Syntax and Semantics of ALCNR 

This section gives a brief insight into syntax and semantics of the description logic 
used as concept representation language within this paper. ALCNR is an expressive 
description logic that supports intersection, union, full existential quantification, value 
restriction, full negation and number restrictions to inductively construct complex 
concept descriptions out of primitive concepts and roles (binary predicates). In the 
following sections the letters A and B are used to represent atomic concepts, R and S 
                                                           
1 This is, at the same time, one of the reasons why we do not claim that the presented similarity 

theory is necessarily cognitive adequate; however due to lack of space this is not discussed 
here in detail.  
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for roles and C and D for complex (composed) concepts, while X and Y denote that a 
given formula can be applied to all of them. Additional background information about 
ALCNR  and related description logics is discussed in [16]. 

Before similarity can be computed, the compared (complex) concepts have to be 
rephrased to the following ALCNR disjunctive normal form [17]: A concept descrip-
tion C is in normal form iff  C = ¨, C = ^ or C = C1+…+ Cn and each Ci (i= 1,…n) is 
of the form: 

 

The set primitive(C) represents all (negated) primitives (and absurdity) at the top-level 
of C. NR is the set of available roles, and existsR(C) denotes the set of all C´ for which 
there exists ∃R.C´ on the top-level of C. forallR(C) denotes the intersection of con-
cepts (C1*…* Cn) derived by merging all value restriction for the role R (∀R.Ci ) on 
the top level of C. minR(C) and maxR(C) represent the minimum and maximum cardi-
nalities for the role R on the top-level of C. Complex roles are in conjunctive normal 
form (R = R1*…* Rn) where each Ri is primitive. Note that the concepts forallR(Ci) 
and C´ are again in ALCNR  normal form.  

Table 1. Syntax and semantics of ALCNR [16, 17] 

Syntax Semantics Description 
A A I ⊆ ΔI atomic concept 

R R I ⊆ Δ I x Δ I atomic role 

> Δ I Totality 

⊥  ∅ Absurdity 

¬C Δ I  \ C I full negation 

C* D C I ∩ D I conjunction (intersection) 

C+ D C I ( D I disjunction (union) 

∀R(C) { x ∈ Δ I | ∀y. (x, y) ∈ R  I  y ∈ C  I } value restriction 

∃R(C) { x ∈ Δ I | ∃y. (x, y) ∈ R  I , y ∈ C  I } existential quantification 

(≤      n R) 

(≥ n R) 

{ x ∈ Δ I | |{y:(x, y) ∈ R  I }|≤     n} 

{ x ∈ Δ I | |{y:(x, y) ∈ R  I }|≥    n} 

number restrictions 
(n ∈ô) 

R* S R I ∩ S I role conjunction 

To ensure that the semantic similarity measure is not influenced by syntactic form, 
rewriting rules as discussed in [17, 18] have to be applied in order to get a canonical 
representation of the compared concepts. On the one hand these rewriting rules map 
between equivalent expressions such as ∀R(⊥) and (≤ 0 R); on the other hand they 
make sure that only such descriptions are used within concept specifications that (by 
definition) have impact on the cardinality of the regarded sets. 
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3   Scenario 

This section describes a simplified concept matching scenario to which SIM-DL is 
applied afterwards. Both the presented scenario and the introduced conceptualizations 
are intended to briefly demonstrate the abilities and shortcomings of the theory in-
stead of trying to develop a meaningful and sound application ontology.  

We assume that a European lodging portal on the internet is providing information 
about accommodations in touristy attractive cities. To avoid maintenance costs, the 
service provider does not store the information in a local database but dynamically 
connects to external (geo) web services. However to offer a consistent interface and 
vocabulary to the portal users, the service provides an own categorization. To do so, 
the types of accommodations distinguished in the external services have to be mapped 
to the local terminology. One of the external services, delivering information about 
accommodations in Amsterdam, provides separate conceptualizations for houseboats 
and botels2 while the local knowledge base does not make this distinction. 

The task of similarity measurement within this scenario is to propose whether bo-
tels should be displayed as hotels or houseboats within the local terminology pre-
sented to the system users. The service provider therefore runs a similarity query us-
ing the external Botel conceptualization as search phrase (Cs) and Housing as context 
(Clcs) (see section 4).  

Table 2. Conceptualizations for the accommodation service scenario 

User defined context (Clcs) and search concept (Cs) 
Clcs ≡ Housing   
Cs ≡ Boat * Hotel (E) * ∃inside(Waterway) * ∀inside(Waterway) * (≤      1 inside) 
 

Concepts/roles defined within the scenario 
House ≡ Building * Housing   
Hotel (E)≡ Housing * ∃offer(Room) * ∃serviceType(Service) 
Hotel ≡ House * ∃offer(Room) * ∃ serviceType (Service) 
Youth_Hostel ≡  Building * Housing  * ∃serviceType (Service + SelfService ) * ∃offer(Room) 
Botel (E) ≡ Boat * Hotel (E) * ∃inside(Waterway) * ∀inside(Waterway) * (≤      1 inside)  
Houseboat  ≡ Boat * Housing * ∃inside(Waterway) * ∃serviceType(SelfService)  
                                 * ∀inside(Waterway) * (≤      1 inside) 
Cargo_Ship ≡ Boat * Storage * ∃inside(Waterway) *  (≤      1 inside) 
 

To avoid debating fundamental difficulties in ontology matching3, we assume that 
all services share a common base vocabulary for their primitives (such as described in 
[1] and depicted in figure 1). Note that the accessory (E) in table 2 denotes concepts 
from the external service. Moreover for reasons of readability and simplification, the 
concepts in table 2 are not expanded to their full normal form and those only appear-
ing on the right hand side are assumed to be primitives. 

                                                           
2 For instance: Hotel Amstel Botel Amsterdam: http://www.amstelbotel.nl/ 
3 However we claim that also complex ontology matching tasks benefit from the idea of simi-

larity measurement as demonstrated in [15]. 
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4   SIM-DL 

This section stepwise defines a context-aware and directed similarity measure for DL 
concepts applicable to information retrieval and matching scenarios. As the presented 
theory combines ideas from feature and network (distance) -based similarity models, 
conceptual commonalities and differences to existing approaches are pointed out. 

In SIM-DL, similarity between concepts in normal form is measured by comparing 
their ALCNR descriptions for overlap, where a high level of overlap indicates high 
similarity and vice versa. As in description logics, (complex) concepts are specified 
out of primitive concepts and roles using given language constructors (see table 1), 
similarity is defined as polymorph, binary and real-valued function X × Y  R[0,1] 
providing implementations for all language constructs offered by the used description 
logic. The overall similarity between concepts is just the normalized (and weighted) 
sum of the single similarities calculated for all parts of the concept descriptions. A 
similarity value of 1 indicates that compared concept descriptions are equal whereas 0 
implies total dissimilarity. In the following σ denotes the normalization factor while 
ω is used to represent weightings. Note however, that for reasons of readability and 
clarity of the presented equations only the weighting on disjunction level is discussed 
here in more detail4. Additional weightings, responsible for the balance between roles 
and fillers (range-concepts) or between several kinds of restrictions, are discussed in 
the further work section.  

First of all, to measure similarity it has to be determined which parts of the concept 
descriptions (specified by the same language constructor) are compared to each other. 
To do so, the similarity for each element from the Cartesian product X × Y (for a cer-
tain constructor on the same level of the normal form) is measured. From the resulting 
set of tuples, those with the highest similarity value are chosen for further computa-
tion; where each X respectively Y is only selected once. In other words, for each part 
of the search concept’s description, a counterpart from the compared-to concept’s 
description is chosen in a way that the most similar parts are compared and each ex-
pression is only examined once. In the following the set of selected pairs is marked by 
the letter S followed by an abbreviation for the considered constructor.   

The presented similarity theory is directed, i.e. asymmetric [4], in a sense that the 
resulting overall similarity depends on the search direction. Therefore sim(X, Y) is 
not necessarily equal to sim(Y, X). While each part of the search concept’s descrip-
tion is compared to a counterpart from the compared-to concept, some parts of the 
latter may not be taken into account for comparison. This is always the case if the 
compared-to concept is specified by more expressions than the search concept. The 
similarity for these remaining parts is 0 while they do not increase the normalization 
factor σ. If however the search concept is described by more elements than can be 
compared, the similarity for these parts is also 0, but σ is increased by 1 for each re-
maining part. As result the overall similarity is decreased. In other words, if the exam-
ined concept in the application ontology is more specific than requested by the user 

                                                           
4 This weighting is mandatory in a sense that leaving it aside would violate the idea of disjunc-

tion; however we do not claim that it is more important for overall similarity than the addi-
tional weightings discussed in the further work section. 
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(via the search concept) this has no impact on the measured overall similarity5. On the 
other side similarity decreases if the user’s search concept is more specific than its 
counterpart in the queried ontology (see also [7]). Defining similarity as ratio between 
common and available (i.e. shared and distinguishing) parts of considered concept 
descriptions makes the presented approach comparable to the feature-based MDSM 
approach [4] and also the Lin’s similarity theorem [19]. Note however that in fact 
SIM-DL compares formal set restrictions, not features (see section 5). 

In the previous sections (see also figure 1) context was described as component of 
similarity-based retrieval. The idea underlying context (first integrated into geospatial 
similarity measures by Rodríguez & Egenhofer [4]) is on the one hand to determine 
which parts from the application ontology have to be compared to the search concept 
and on the other hand to influence the measured similarity making it situation-aware. 
Within SIM-DL, context is used to combine the benefits of subsumption reasoning 
and similarity-based retrieval (see section 1). Context is defined as a set of concepts 
from the application ontology that, after reclassification (comparable to the Lutz & 
Klien approach [1]), are subconcepts of Clcs

6
: (Context = {C| C Clcs}). Clcs itself is 

specified by the user together with the search concept (Cs) in terms of the shared vo-
cabulary. In other words, context determines the universe of discourse (called applica-
tion domain in [4]). In the presented accommodation scenario Clcs ensures that all 
concepts proposed to be similar to Botel at least act as accommodations (subconcepts 
of Housing). Therefore similarity to cargo ships would not be measured, although 
they are kinds of boats as well (see table 2).   

To compute overall similarity (simu) between two concepts C and D in ALCNR 
normal form, the similarity between the disjunctions C1+…+ Cn and D1+…+ Dm has 
to be measured according to equation 1. Simplifying one may argue that this is the 
maximum similarity occurring during the cross comparison of involved Ci to Dj, 
which is not the case, because this measure would reflect the maximum possible simi-
larity occurring between certain individuals, but not the overall tendency. Instead, 
similarity is calculated for each element of SI (the set of tuples (Ci,Dj) chosen for 
comparison) and weighted (ω) according to their probability. Note that each Ci and Dj 
is formed by intersection (see ALCNR normal form) and their similarity is therefore 
measured by simi and described below (see equation 2). 

 
(1) 

The weighting ω on disjunction level becomes necessary because, in contrast to inter-
section, each individual that is member of a concept formed by disjunction can be 
member of all its single concepts or only of some of them. Consequently overall simi-
larity cannot simply be the sum of the similarities between compared Ci and Dj and 
hence ω acts as adjustable factor for their relative importance. Note that the sum of all 
ω is always 1. Depending on application area and search strategy, ω can be computed 
out of the set cardinality (A-Box) of all involved concept on disjunction level, using 
                                                           
5 Note however, that while directed similarity fits the requirements of information retrieval [7], 

other tasks may benefit from default similarity [6] which can be achieved by setting the nor-
malization factor (independently of the direction) to the number of selected pairs.  

6 The abbreviation was chosen to refer to the idea of the least common subsumer in DL [16].  
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probability assumptions (A&T-Box), or from the structure of the examined ontology 
(T-Box) (see [16] about A-Box and T-Box). The weighted similarities can then be 
amalgamated the same way as for the intersection constructor. 

 

(2) 

On the level of intersection, similarity between two (complex) concepts is the sum of 
similarities derived from mutually comparing their primitive concepts as well as those 
formed by existential, value and number restrictions/quantification (see equation 2). 
In addition to the symbols introduced before, the normalization factor σ is defined as 
the sum of cardinalities derived from the sets of compared tuples (SP, SE, SF, SMIN 
and SMAX). Consequently the possible results of simi range between 0 and 1. 

 
(3) 

As for primitive concepts7, similarity cannot be computed as degree of overlap be-
tween their descriptions, it has to be determined according to equation 3. SIM-DL 
considers primitives the more similar, the more common defined concepts both sub-
sume. To be more precise, similarity between primitives is expressed as the ratio be-
tween the number of subconcepts of both primitives and the number of subconcepts of 
one or both of them determined in a given context. However this approach resembles 
Tversky’s ratio model [20] and MDSM [4], it is not asymmetric because this would 
require a subconcept relationship between A and B or to a common superconcept 
which is per definition not the case for primitives. Moreover not features in the sense 
of attributes, functions or parts [4], but subconcepts are compared. 

 
(4) 

 (5) 

 
(6) 

Equation 4, 5 and 6 show how similarity is measured between restrictions and be-
tween quantifications. To determine the overlap both parts, the involved roles and the 
involved fillers (respectively cardinalities) have to be taken into account. Note that 
forallR(Ci) and C´ are again in normal form (see section 2) while mR(C) and mS(D) are 
numbers restricting the max/min occurrence or the roles R respectively S. In addition 
to already introduced symbols, simr denotes the similarity between roles while m acts 
as abbreviation for min respectively max, indicating that the same equation is applied 
                                                           
7 Per definition primitive concepts (also called base symbols) are those which only occur on the 

right hand side of axioms. 
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for both cases. mRS(total) denotes the highest maximum (respectively minimum) car-
dinality for the roles R or S in the user defined context. In other words, similarity be-
tween number restrictions depends on their relative distance, where mRS(total) reflects 
the notion of universe in statistics. While the similarity simr for primitive roles can be 
measured following the ideas introduced for primitive concepts (see equation 3), simi-
larity between roles formed by intersection or situated in conceptual neighborhoods is 
computed according to equation 7 and 8.  

 
(7) 

 
(8) 

ALCNR  supports the composition of roles by intersection, consequently every (com-
plex) role can be expanded to an intersection of primitive roles and hence similarity 
can be understood as the sum of the similarities for mutually compared (SRI) primi-
tive roles from R and S (simri; equation 7). The normalization factor σ becomes nec-
essary to ensure that the derived inter-role similarity ranges between 0 and 1 and can 
be integrated as part for the similarity measures introduced for restrictions and quanti-
fications. 

 

Fig. 2. a) Topological neighborhood [21] b) Temporal-(C) neighborhood [22]8 

Conceptual neighborhoods, such as the topological and temporal depicted in figure 
2, are of major importance within GIScience. Per definition one of the benefits of 
neighborhood models is that they come with an own, straightforward notion of simi-
larity which can be directly integrated as so-called network approach (see also [2, 10]) 
into SIM-DL. The neighborhood similarity weighting (nsw; equation 8) is defined in 
terms of edge distance between compared roles (shortest path) and maximum distance 
within the graph. This approach is comparable to the distance measure by Rada et al. 
[23]. The edge weightings used for determining distance depend on the neighborhood 
and even do not need to be symmetric. However they are assumed to be constantly 1 
here. Within SIM-DL, nsw can be applied in place of or jointly with simri (simr). For 
complex similarity measures between spatial scenes see [21, 24].  
                                                           
8 [20] introduces three different graphs (A, B and C) for temporal neighborhood, which is not 

discussed here in detail. 



1690 K. Janowicz 

5   Discussion and Further Work 

Applying SIM-DL to the accommodation scenario in section 3 yields that Botel is 
more similar to Houseboat than to Hotel or Youth_Hotel (see table 3) and therefore 
the service provider can also display botels on the web portal whenever users are 
searching for houseboats in Amsterdam. Note that in contrast to subsumption-based 
retrieval the resulting similarities cannot be used to align the concept Botel within the 
local knowledge base. For instance the definition of Botel is also similar to the local 
Hotel concept; however a botel is not a building and therefore not a special case (i.e. a 
subconcept) of a hotel. 

Table 3. Measured similarities for the concepts compared in the accommodation scenario 

sim(Cs, Hotel) sim(Cs, Houseboat) sim(Cs, Youth_Hostel) 
0.5 0.66 0.41 

Moreover it has to be emphasized again that similarity in computer science meas-
ures overlap between representations. An application ontology about vessels would 
focus on other aspects then the accommodation ontology and hence the resulting simi-
larities would be different. This is not a shortcoming of the presented theory, but an 
indicator for the situated nature of conceptualization [25] and hence the importance of 
context for similarity assessments. 

In addition to the results obtained by applying SIM-DL to the accommodation sce-
nario, MDSM[4]9 was also used for comparison. However, due to the different repre-
sentation languages (and as claimed in section 1) this turns out to be a difficult task. 
MDSM distinguishes between parts, functions and attributes as features (i.e. charac-
teristics) of the compared conceptualizations. The elements compared by SIM-DL 
however are formal set restrictions (see semantics of ALCNR; section 2). While 
primitive concepts can be mapped to features as proposed in [14], the author is very 
skeptic about applying this method also to (role based) restrictions and quantifica-
tions, because features in MSDM are synsets and no notion of fillers or partial 
matches is defined (see [8]). Specifying the feature inside within a concept description 
in MDSM means that all its instances are inside something, which is not the case for 
∀inside(T) or ∀inside(Waterway). Moreover basing on Tversky’s ratio model, MDSM 
regards concepts as bags of features and therefore it is no clear how to integrate dis-
junction (+) into this approach.  

Nevertheless the comparison between SIM-DL and MDSM points out an interest-
ing aspect of the presented approach: If several constructors (for the same role) are 
necessary to restrict an intended set (such as for inside in table 2) this has multiple 
impact on the measured similarity10. This is not problematic from a set theoretic point 
of view, but not the way humans think about similarity (see also remark in section 1). 

Although by integrating measures for role-based constructors, role intersection 
and neighborhoods, SIM-DL meets the demands claimed for modern inter-concept 
                                                           
9  The same remarks also count for Tversky’s ratio model. 
10 Note however that the redundant definitions for inside in table 2 are captured by the rewriting 

rules for the canonical normal form. 
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similarity theories [4, 7, 8], the presented approach is still in progress and a lot of 
work remains to be done: In addition to the weighting introduced on disjunction level, 
further weightings should be integrated into SIM-DL to balance the importance be-
tween roles and fillers for existential quantification (or value restrictions). However, 
defining sime as weighted sum of role and filler similarity raises the question how 
such weightings should be derived and whether the role or filler part of an existential 
quantification is more or less important for sime (and therefore overall similarity). 
Additional weightings should also determine the relative importance of language con-
structs. In terms of the presented scenario, the level of information about botels pro-
vided by ∃inside(Waterway) is higher than (≤  1 inside), because the last mentioned ex-
pression only stats that a botel is at most inside (2D) one thing. Further work has to 
examine whether these weightings can be (semi)-automatically derived from the con-
text, the kind of chosen description logic and canonical form. The integration of In-
ference based Information Value [11]  and other information-theoretic approaches 
[19] into SIM-DL seems to be a promising approach. 

Moreover, until now SIM-DL does not support cyclic concept definitions. To over-
come this shortage, techniques such as fixpoint semantics have to be integrated into 
the theory. Additional work is necessary to develop similarity theories for even more 
expressive description logics (such as ALCRP(D) [13]), especially focusing on full 
qualifying number restrictions and concrete domains. In terms of the presented sce-
nario this would allow to express how near something is to a waterway instead of 
merely distinguishing between inside, meet and overlap. Finally computation time is a 
critical aspect (especially for the Cartesian products) to be examined in more detail. 
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