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Abstract. Semantic similarity measurement gained attention as a method-
ology for ontology-based information retrieval within GIScience over the
last years. Several theories explain how to determine the similarity be-
tween entities, concepts or spatial scenes, while concrete implementations
and applications are still missing. In addition, most existing similarity
theories use their own representation language while the majority of geo-
ontologies is annotated using the Web Ontology Language (OWL). This
paper presents a context and blocking aware semantic similarity the-
ory for the description logic ALCHQ as well as its prototypical imple-
mentation within the open source SIM-DL similarity server. An applica-
tion scenario is introduced showing how the Alexandria Digital Library
Gazetteer can benefit from similarity in terms of improved search and
annotation capabilities. Directions for further work are discussed.

1 Introduction and Motivation

Semantic similarity measurement has become a major research topic within ge-
ographic information science during the last years, aiming at improved methods
for information retrieval and integration of heterogeneous spatial data sources.
The utilization of findings on similarity measurement from psychology [1] promises
user interfaces and search results with an improved cognitive plausibility. How-
ever, existing similarity theories aiming at the geospatial domain [2–4] mostly
lack compatibility with current widespread knowledge representation languages
such as the Web Ontology Language (OWL). The similarity theories require the
knowledge to be present in specific formats, ignoring the applicability to exist-
ing (geo-)ontologies. To overcome this gap between semantic similarity theories
on the one hand, and existing ontologies on the other hand, we present the
description logic (DL) based SIM-DL theory [5].

The relevance of a similarity framework, however, is not only depending on
its applicability to existing knowledge representations, but also on its adaptation
to technical prerequisites. The DIG1 interface has been established as a standard
interface for communication between applications such as ontology editors and
1 Description Logic Implementation Group, http://dig.sourceforge.net/



reasoners. To ensure compatibility with this de-facto standard, we extend the
DIG interface by a group of similarity functions. The open source SIM-DL server
is introduced as a reference implementation of the SIM-DIG interface.

Existing similarity theories for the geospatial domain have been evaluated in
specially designed application scenarios, without implementation in real-world
applications. Beyond the SIM-DL theory and server, we also present a gazetteer
application to demonstrate the benefits of similarity based applications. Cur-
rent gazetteers are mostly based on semi-formal feature2 type thesauri, defining
feature types in terms of a hierarchy with a restricted number of relations. We
present a novel Web interface for the Alexandria Digital Library gazetteer that
makes use of the SIM-DL server and retrieves its information from a feature
type ontology to provide an intuitive work flow and enhanced support for novice
users.

The remainder of this paper is organized as follows: we first present related
work on similarity measurement and description logics, and then introduce an
extended version of the SIM-DL theory [5] and framework. The server prototype
is discussed, followed by a description of the application scenario and an outlook
on future work.

2 Related Work

This section gives a brief overview of related work concerning semantic similarity
and introduces the description logic ALCHQ and its normalization. Only such
aspects which are necessary for the understanding of the SIM-DL similarity
theory and implementation are described; for further details see [6].

2.1 Semantic Similarity Measurement

The notion of similarity originated in psychology and was established to deter-
mine why and how entities are grouped into categories, and why some categories
are comparable to each other while others are not [1, 7]. The main challenge with
respect to semantic similarity measurement is the comparison of meanings as op-
posed to purely structural comparison. A language has to be specified to express
the nature of entities and metrics are needed to determine how (conceptually)
close the compared entities are. While entities can be expressed in terms of at-
tributes, the representation of entity types is more complex. Depending on the
expressivity of the representation language, types are specified as sets of features,
dimensions in a multidimensional space, or formal restrictions specified on sets
using various kinds of description logics. While some representation languages
have an underlying formal semantics (e.g. model theory), the grounding of sev-
eral representation languages remains on the level of an informal description.
Because similarity is measured between entity types which are representations
2 It is important to distinguish between geographic features as organized in gazetteers,

and the features—i.e. properties, parts and functions—used for concept comparison
in certain similarity theories (see section 2.1).



of concepts in human minds, similarity depends on what is said (in terms of
computational representation) about these types. This again is connected to the
chosen representation language, leading to the fact that most similarity measures
cannot be compared. Beside the question of representation, context is another
major challenge for similarity assessments. In many cases meaningful notions of
similarity cannot be determined without defining in respect to what similarity
is measured [8, 7, 9].

Similarity has been widely applied within GIScience over the past few years.
Based on Tversky’s feature model [10], Rodŕıguez and Egenhofer [2] developed
an extended model called Matching Distance Similarity Measure (MDSM) that
supports a basic context theory, automatically determined weights, and asym-
metry. Raubal and Schwering [3, 4] used conceptual spaces [11] to implement
models based on distance measures within geometric space, while Janowicz and
Raubal [12] combined model theoretic and geometric aspects to determine sim-
ilarity based on affordances. Several measures [13, 14, 5] were developed to close
the gap between (geo-)ontologies described by various kinds of description logics,
and similarity theories that had not been able to handle the expressivity of such
languages. Other similarity theories [15, 16] have been developed to determine
the similarity between spatial scenes. The ConceptVISTA3 ontology manage-
ment and visualization toolkit uses similarity for concept comparison.

2.2 Description Logics and DIG Interface

Description Logics are a family of knowledge representation languages used to
model concepts and entities in a knowledge base. Such a knowledge base consists
of a TBox containing the terminology, i.e. the vocabulary describing a given do-
main, and an ABox storing assertions (about named entities). Description logics
distinguish two kinds of symbols, logical and non-logical symbols. The former
have a pre-defined meaning grounded in set theory, while the latter are domain
specific. Logical symbols are either4 constructors (u,t,∃,∀,≤,≥) used to com-
pose complex concepts out of primitive ones or connectives such as equality (≡)
or inclusion (v). Same as for first order logic, the formal semantics of descrip-
tion logics is given by its interpretation. An interpretation = is defined as a
tuple 〈

aI
, I〉.

aI denotes a non-empty set called the domain of interpretation,
whereas I describes the interpretation function mapping from non-logical sym-
bols to elements and (binary) relations over

aI . The subset AI of
aI associated

with a concept A is also called its extension. Within this paper the term descrip-
tion or specification of a concept denotes the statements (phrased using the DL
language; see Table 1) used to represent a concept in our mind, not its extension.
ALCHQ used as representation language for the SIM-DL similarity measure

is an expressive description logic that supports intersection, union, full existential
quantification, value restriction, full negation and qualified number restrictions
to inductively construct complex concepts out of primitive ones and roles (binary

3 http://www.geovista.psu.edu/ConceptVISTA
4 Leaving punctuation and numbers aside.



Table 1. Syntax and semantics of ALCHQ.

Syntax Semantics Name

>
aI Top

⊥ ∅ Bottom

A AI ⊆
aI Atomic concept

R RI ⊆
aI ×

aI Atomic role

¬C
aI \ CI (Full) negation

C ≡ D CI = DI Concept equality

C v D CI ⊆ DI Concept inclusion

R ≡ S RI = SI Role equality

R v S RI ⊆ SI Role inclusion

C uD CI ∩DI Concept intersection

C tD CI ∪DI Concept union

∀R.C {a ∈
aI |∀b.(a, b) ∈ RI → y ∈ CI} Value restriction

∃R.C {a ∈
aI |∃b.(a, b) ∈ RI ∧ y ∈ CI} Existential quantification

≤ nR.C {a ∈
aI ||{b ∈

aI |(a, b) ∈ RI ∧ b ∈ CI}| ≤ n} Qualified max. number restriction

≥ nR.C {a ∈
aI ||{b ∈

aI |(a, b) ∈ RI ∧ b ∈ CI}| ≥ n} Qualified min. number restriction

predicates). In the following sections the letters A and B are used to represent
atomic concepts, R and S for roles and C and D for complex (composed) concepts.
X and Y are used for general statements about similarity and alignment that hold
for both, concepts and roles. Additional background information about ALCHQ
and related description logics is discussed in [6].

The Web Ontology Language (OWL) comes in different flavors: OWL-Lite is
based on the description logic SHIF , while OWL-DL corresponds to SHOIN (D).
The extended new version OWL 1.1 matches the expressivity of SROIQ(D).
For this paper we have chosen the description logic ALCHQ because it is close
enough to OWL-DL, leaving aspects that are not relevant for similarity aside.
ALCHQ even supports qualified number restrictions which are part of OWL 1.1.
The main difference between ALCHQ and the OWL logics is the missing support
for several role axioms such as role inclusion in ALCHQ (a similarity measure
for role intersection was discussed in [5]), role transitivity and inverse roles on
the one hand as well as nominals and datatype properties on the other hand.
While it is hard to find a meaningful notion of similarity for role axioms such as
transitivity, the similarity between nominals (and simple datatypes) boils down
to instance similarity.

The DIG interface is an API specification for reasoning in DL systems [17].
The DIG 1.1 specification provides an interface for reasoning services based on
the SHOIN (D) language. The specification provides an XML-encoded HTTP
interface. Clients communicate with a server via HTTP POST, with requests
and responses encoded based on the underlying DIG XML Schema5. DIG dis-
tinguishes between different types of messages and operations. The reasoner’s
identification message is comparable to OGC’s getCapabilities requests: the
server responds which language and services it supports. This is especially im-
portant because of the variety of DL languages, i.e. not every DIG server will
support all constructs that are part of the specification (the basic constructs are

5 The DIG XML Schema can be found at: http://dl-web.man.ac.uk/dig/2003/02/



compulsory, however). The management operation creates or releases a knowl-
edge base (KB) that is further identified with an unique URI. Tells operations
insert assertions into the reasoner’s KB, while Asks operations allow the client
to perform reasoning tasks on the KB (see [17] for details).

3 Similarity Framework and Theory

By studying several similarity theories (including feature, geometric and model
driven approaches) we found generic patterns which jointly form a framework for
measuring similarity between concepts (see also [5, 18]). This section describes
the framework and applies it to determine similarity between concepts specified
in ALCHQ.

The framework consists of the following five steps. Their concrete imple-
mentation depends on the semantic similarity theory on the one hand and the
underlying representation language on the other hand.

1. Selection of query (search) and target concepts.
2. Transformation of concepts to canonical form.
3. Definition of an alignment matrix for concept descriptors.
4. Application of constructor specific similarity functions to selected pairs.
5. Determination of normalized overall similarity.

For reasons of readability all equations forming the SIM-DL measure (steps
4 and 5) have been moved to the appendix.

3.1 Query and Target Concepts

Before measuring similarity it needs to be determined which concepts from the
examined ontology should be compared. Depending on the application scenario
and theory, the query (search) concept Cs can be part of the ontology or phrased
using a shared vocabulary [5, 19]. The target concepts {Ct} are selected by hand
or determined by the context of the query. Such a context specifies the domain of
application either by explicitly selecting the compared-to concepts or implicitly
by defining a context concept Cc. In the latter case the target concepts are all
concepts subsumed by Cc. Same as for the matching distance similarity measure
defined by Rodriguez and Egenhofer [2], SIM-DL defines the set of target con-
cepts as {Ct|Ct ⊆ Cc}. All similarity functions (see section 3.4) are defined with
respect to this context.

3.2 Canonical Normal Form

Before similarity can be computed, the compared concepts have to be rephrased
to a canonical normal form to reduce potential syntactic influence. The proce-
dure can be further distinguished into a normalization step and the application of
rewriting rules. Both steps mostly depend on the underlying representation lan-
guage and their importance increases with the expressivity of the used language.



In case of geometric representations a canonical normal form can be achieved
through mappings between reference spaces if they approximate the same quality
space (see [20]).

In case of model driven measures based on description logics, the procedure is
more complex. For ALCHQ we have developed the following disjunctive normal
form (DNF): A concept description C is in normal form iff C = >, C = ⊥ or
C = C1 t ... t Cn and each Ci(i = 1, ...n) is of the form:

C :=
l

A∈primitive(Ci)

A u
l

R∈NR

0@ l

C′∈existsR(Ci)

(∃R.C′) u ∀R.forallR(Ci)

u
l

C′∈minR(Ci)

(≥ |minR(Ci)|R.C′) u
l

C′∈maxR(Ci)

(≤ |maxR(Ci)|R.C′)

1A
(1)

The set primitive(C) represents all (negated) primitives (and ⊥) at the
top-level of C. NR is the set of available roles, and existsR(C), minR(Ci) and
maxR(Ci) denote the sets of all C ′ for which there exists ∃R.C ′ (respectively
min/max restrictions) at the top-level of C. forallR(Ci) denotes the intersec-
tion of concepts (C1 u ... u Cn) derived by merging all value restrictions for the
roleR (∀R.Ci) on the top level of C. |minR(Ci)| and |maxR(Ci)| represent the
minimum and maximum cardinalities for the role R on the top-level of C. Note
that the concepts forallR(Ci) and C ′ are again in ALCHQ normal form.

To ensure that the SIM-DL measure is not influenced by the syntactic form,
rewriting rules (see also [21, 22]) have to be applied in order to get a canonical
representation of the compared concepts. On the one hand these rewriting rules
map between equivalent expressions such as (∀R.⊥) and (≤ 0R.>). On the
other hand they ensure that only such descriptions are used within concept
specifications which (by definition) have an impact on the cardinality of the
regarded sets. For instance (≥ 1R.C)u (≥ 2R.C) is mapped to (≥ 2R.C), while
(...u>) can be skipped without changing the extension of the specified concept.

3.3 Alignment Matrix and Blocking

While section 3.1 describes how concepts (Cs, Ct1 ...Ctn) are selected, an align-
ment matrix [5, 23] is necessary to determine which parts of their descriptions
are compared. Most theories assume similarity to be a binary relation, hence the
alignment matrix creates tuples sim(Xs, Ytn) for all possible combinations of the
Cartesian product Cs×Ctn . While Cs and Ctn denote two compared-to concepts,
Xs and Ytn are parts of their descriptions (e.g. concrete number restrictions).

In case of feature based representations such as used for MDSM [2], the
alignment matrix is reduced to a 0/1 matching. If two parts of compared concept
descriptions have the same label, they count as common features, if not they are
distinguishing features. The impact of these features on the overall similarity
depends on sub/super relations between the compared concepts (see section 3.5).
Note that MDSM distinguishes between three feature types: functions, parts and
attributes. Features are only compared if they belong to the same feature type.



Geometric approaches which take relations into account, choose such tuples for
later comparison where the target relation is a subtype of the source relation.

For SIM-DL the alignment matrix is defined as follows. If two concepts are
compared, an alignment matrix M1 with all possible combinations of their parts
is created. Once similarity for each tuple is calculated (see section 3.4), those
tuples with the highest similarity values are chosen for further computation.
Note that each Xs respectively Ytn is only selected once and similarity can only
be calculated if both elements of the tuple are based on the same constructor.
For instance, a value restriction is never compared to a quantification. For each
selected tuple the normalization factor (see section 3.5) is increased by 1.

To handle circular definitions6 such as C ≡ ... u (∀R.C) the matrix (and the
similarity functions) need to implement a blocking mechanism as known from
tableaux algorithms for subsumption reasoning in DL. For instance, consider
the tuple sim(C,D) from the matrix M1 used to compare a search and target
concept (where C is defined as above and D ≡ ...u(∀R.D)). In order to calculate
the similarity between C and D, an alignment matrix M2 that contains tuples
for all possible combinations of the Cartesian product C×D is created. Since the
definition of concept C (and D) is circular, all tuples from M2 containing (∀R.C)
(and (∀R.D)) will end up in a loop (creating infinite alignment matrices). Instead
such tuples are set as blocked. All similarity values for tuples in the matrix M2

are calculated leaving the blocked tuples aside. The result is an approximated
similarity between C and D. Using this value, the blocked tuples can now be
computed and M2 (and finally M1) can be re-calculated without loops. This
tuple-wise blocking often appears in case of negation. If only one part of the
tuple is blocked (e.g. if (∀R.D) is replaced by (∀R.E)) the process continues
unfolding E and building matrices until no expression to be compared to (∀R.C)
is left, or its filler is either > or primitive. As similarity can be computed for this
tuple, the value is now used one level (matrix) higher and so on until sim(C,D)
can be determined. This kind of blocking is called expression-wise here.

3.4 Similarity Functions and Neighborhoods

After choosing the compared-to concepts and aligning their descriptions, simi-
larity is measured for each selected tuple sim(Xs, Ytn). Depending on the con-
structors used for Xs and Yt different similarity functions have to be applied.

In case of MDSM, features are distinguished into different types during
the alignment process, however, the same similarity measure (a weighted and
asymmetric feature ratio function) can be applied to all of them. Geometric ap-
proaches allow for several functions either based on different metrics (such as
Euclidian or city-block) and, if they support relations, distinguish between simi-
larity (inverse distance) within a conceptual space and network-based similarity
measures for relations.

6 The problem of circularity also affects other similarity measures, but was not taken
into account so far.



Because the ALCHQ knowledge representation language allows for more ex-
pressive conceptualizations, SIM-DL has to offer a similarity function for each
constructor. The measurement process always starts at the union level (see
ALCHQ canonical normal form; section 3.2) with the simu function. Each con-
cept on this level is itself formed by intersection and similarity between such
concepts is measured by simi

7. Each concept of this intersection is either a
primitive (simp), an existential quantification (sime), a value restriction (simf )
or a qualified number restriction (simmin, respectively simmax). In addition to
role hierarchies (simr) SIM-DL supports temporal and topological neighbor-
hoods (simn) to calculate similarity between roles. This allows to determine the
similarity between tuples such as (∃inside.Lake, ∃overlap.Lake); see [5] for more
details. All necessary similarity functions are listed in the appendix.

3.5 Overall Similarity

The overall similarity determines the similarity between compared concepts Cs
and Ct based on the similarities for all considered tuples sim(Xs, Ytn). In most
examined theories this step was a summation function, normalized to values
between 0 and 1.

For MSDM the overall similarity is the weighted sum of the similarity de-
termined between functions, parts and attributes. While the weighting indicates
the relative importance of each feature type, at the same time it acts as the
normalization factor (

∑
ω = 1)[2]. In case of geometric approaches the overall

similarity is given by the normalized (via z-transformation) sum of compared
dimensions.

For SIM-DL each similarity function discussed in section 3.4 takes care of
its normalization using the number of compared tuples. Each similarity function
returns a value between 0 and 1 to the function (on a higher level) it was called
by.

4 Similarity Server and Interfaces

This section gives a brief overview of the architecture of the DIG-based semantic
similarity server. A plug-in for the Protégé Ontology Editor will be described.
The SIM-DL server and the plug-in are still under development, but already
available as an open-source cross-platform project at Sourceforge.net. The cur-
rent beta version8 supports subsumption reasoning and similarity measurement
up to ALCHQ, support for more expressive description logics is under develop-
ment.

7 Of course primitives, restrictions and quantifications can already appear on union
level without violating the measurement process (see appendix).

8 The current release can be downloaded at http://sim-dl.sourceforge.net/.



4.1 Architecture

The SIM-DL server is based on an embedded Jetty HTTP server9. Incoming
requests via XML-over-HTTP are processed by a request handler who inter-
prets DIG operations and starts the similarity and reasoning engines. The rea-
soner implements a tableaux algorithm to determine TBox subsumption based
on ABox satisfiability, while the similarity engine is based on the presented SIM-
DL framework and theory. Both components implement their own normalization
and blocking methodes. Each similarity request involves interaction with the rea-
soning component to determine target concepts out of the context. The reasoner
is also used for some similarity functions such as simp. In this paper, we pro-
pose the Protégé10 plugin and gazetteer Web interface (see section 5) as clients;
however, every DIG compatible client software can be used.

4.2 SIM-DIG Interface

A short introduction to the DIG interface was given in section 2.2. The interface
has to be extended to enable similarity measurement between concepts. First,
the Ask syntax has to be extended by a similarity query which defines a search
concept (Cs) and a context concept (Cc). The search concept is compared to all
subclasses of the context concept. Table 2 shows the supported queries as well
as our extension.

Table 2. Supported Ask language, similarity extensions and query syntax.

Request Category Tag Syntax

Satisfiability <satisfiable>C</satisfiable>
Concept Hierarchy <parents>C</parents>

<children>C</children>
<ancestors>C</ancestors>
<descendants>C</descendants>
<equivalents>C</equivalents>

Similarity Queries <ccsimilarity>CS CC</ccsimilarity>

The result of a similarity query contains a set of concepts where each concept
has a value indicating the similarity to the source concept. Since the existing
response operators do not allow for assigning a value to a concept, the response
syntax has to be extended, too. Table 3 shows the supported response operators
and, additionally, the syntax extension that permits similarity queries.

4.3 Protégé Plug-in

To enable the use of reasoning services there is a need for suitable graphical user
interfaces. This holds for standard reasoning tasks, such as subsumption reason-
9 http://jetty.mortbay.org/

10 http://protege.stanford.edu/



Table 3. Supported Ask language, similarity extensions and response syntax.

Response Category Response Syntax Request Category

Boolean <true/> Satisfiability
<false/>

Concept Set <conceptSet> Concept Hierarchy
<synonyms>S11...S1N</synonyms>
<synonyms>SM1...SMN</synonyms>

</conceptSet>
Similarity Set <conceptSet> Similarity Query

<catom name=S1>
<simValue>s1</simValue>

</catom>
<catom name=SN>

<simValue>sN</simValue>
</catom>

</conceptSet>

ing, as well as for similarity reasoning. Today’s standard front-end for DL based
reasoning is Protégé, a Java based open source ontology editor and knowledge
base framework. It is built upon an extensible architecture that provides the
possibility to add further functionality via plug-ins. The Protégé OWL plugin
is one of the most popular plug-ins that have been developed for the Protégé
framework. It enables users to create, explore and modify OWL ontologies sup-
porting OWL-Lite, OWL-DL and OWL-Full [24]. Additionally, it provides DIG-
based access to DL reasoners such as Pellet11. The combination of DL theory,
reasoning services and Protégé as a graphical frontend was a prerequisite for
establishing OWL as the standard for creating semantic web applications. A
similar combination will be necessary to initiate the spread of DL based sim-
ilarity measurement. The Protégé OWL API includes several extension points
for implementing OWL specific plug-ins. To provide a graphical frontend for
accessing the SIM-DL similarity server we developed the SIM-DL plug-in as a
GUI-plugin based on Protégé OWL. The possibilty to view and explore the on-
tologies that are involved in the similarity measurement process is mandatory.
This functionality is already provided by Protégé -OWL and reused for the SIM-
DL plug-in. Due to the architecture of the similarity server the SIM-DL plug-in
has to support the DIG interface. We reused the DIG implementation provided
by Protégé OWL and added the SIM-DL specific DIG elements. Figure 1 shows
a screenshot of the current state of the plugin.

5 Gazetteer Application Scenario

The use of similarity measurement in current gazetteers is hampered by a lack of
formalism in the corresponding feature type thesauri. In the following, we show
how subsumption and similarity based user interfaces can improve the gazetteers’
functionality and usability, based on a transformation of feature type thesauri
into ontologies.

11 http://pellet.owldl.com



Fig. 1. SIM-DL Protégé Plug-in (beta version).

5.1 From ADL FTT to Feature Type Ontology

Georeferencing is the core functionality of gazetteers as place name directories.
The distinction between different place (feature) types is enabled by thesauri,
which contain semi-formal descriptions of the feature types and can be queried
via type-lookup functionality. To fully support subsumption and similarity-based
reasoning, a transformation of these thesauri into formal ontologies is required.
We use the example of the Alexandria Digital Library (ADL) Feature Type
Thesaurus (FTT)12 in the following to demonstrate the required steps and design
decisions. The procedure can be transferred to other thesauri as well.

The ADL FTT contains textual definitions for preferred terms in the form
of scope notes (SN); in addition, non-preferred terms are listed as pointers to
preferred terms via the Use (USE) and Used for (UF) relations, e.g. lakes UF
lagoons. Inheritance between preferred terms is marked by the broader term (BT)
and narrower term (NT) relations, which are not directly comparable to the sub-
and supertype relations in ontologies [25], so that transitivity cannot be taken
for granted. Moreover, there is only one broader term for every term in the ADL
FTT (despite the ANSI-NISO 39.19 standard allowing for multiple inheritance).
This single inheritance structure forces every term to be a NT of only one of the
six top terms; for example, cities are only classified as administrative areas, but
not as manmade features. Beyond NT and BT, the related term (RT) relation is
used to express diverse kinds of relations between terms, so that the semantics of

12 http://www.alexandria.ucsb.edu/gazetteer/FeatureTypes/ver070302/index.htm



RT remain ambiguous—for example, RT is used to describe the relation of lakes
to reservoirs, i.e. a functional relation, but also to wetlands, i.e. a topological
relation.

It must be pointed out that the structure of the ADL FTT is not wrong
or badly designed, since thesauri are developed for different purposes than on-
tologies. However, there is a lack of formalism and explicit semantics from an
ontological point of view, so that an automatic transformation into a feature
type ontology is not possible. To manually transform the thesaurus and preserve
the original naming and structure, a syntactic and semantic conversion as de-
scribed in [25] must be performed. The resulting ontology (see figure 1 for an
extract) uses the top level concept Feature, subsumed by different classes such
as Manmade, Hydrographic or Transportation; note that these classes are not
disjoints, i.e. the concept Canal, for example, subsumes all these feature classes
at the same time. Moreover, feature types (or concepts in ontology terminology)
can be related to each other with an arbitrary number of hierarchically ordered
properties which have to be extracted manually from the RT relations and the
scope notes in the thesaurus. For example, we introduce the property hasCon-
nection, with sub-properties hasOrigin and hasDestination, to specify that a
canal connects (hasDestination) two hydrographic features. This brief insight
into the conversion process shows that the generation of a feature type ontology
requires a significant effort; in the following, we argue that such a conversion is
worthwhile, as gazetteer Web interfaces can greatly benefit from a feature type
ontology.

5.2 Towards a Distributed Gazetteer Infrastructure

The long term vision of current gazetteer research is focussing on the develop-
ment of a distributed local-responsibility service infrastructure instead of a single
world gazetteer. Such an infrastructure can be compared to the Domain Name
Service (DNS) which maps hostnames on the internet to their IP addresses. Each
gazetteer offers lookup for local places within its spatial and thematic scope. If
the gazetteer cannot answer a request, it redirects the query to a higher level
gazetteer which decides whether it or another gazetteer can resolve the query.
The underlying idea is that gazetteers should contain and maintain data of in-
terest for the community running the service. This ensures that the stored data
is both accurate and up-to-date.

A distributed gazetteer infrastructure raises several challenges for both the
georeferencing and the type-lookup function. For georeferencing, the main chal-
lenge is that several names may point to the same place using different footprints,
which includes divergences between the referred-to coordinates, but especially
between the type of footprint such as point versus polygon representation (see
also [26]). In the case of type-lookup, one must ensure that all involved gazetteers
share a common understanding of the feature types used. Gazetteers are devel-
oped for different thematic scopes and spatial scales, which may require differ-
ent conceptualizations of the described features. Consequently, a common feature
type specification needs to be generic enough to form a top level for all gazetteers



and extensible to allow for local type definitions. Figure 2 illustrates the role of
the SIM-DL server within the proposed gazetteer infrastructure.

Fig. 2. Similarity-based feature type lookup within the proposed gazetteer
infrastructure.

5.3 Similarity-based Gazetteer Web Interface

To efficiently use the ADL gazetteer’s Web interface13, the user needs detailed
knowledge of the FTT hierarchy to select the adequate preferred term for what he
is looking for. If the user is not aware of the FTT hierarchy, retrieving the desired
information is complicated and tedious, as the user must first consult the FTT
to find out about the preferred term for his query. To overcome these difficulties,
we propose a subsumption and similarity based gazetteer Web interface based
on a feature type ontology, as shown in figure 3.

The proposed interface utilizes AJAX technology in a search-while-you-type
input field: as the user types in the place type he has in mind, results are auto-
matically loaded in the background. The suggested types are based on a syntactic
match of the letters already typed in by the user; next to every suggestion, its
supertypes and the most similar other types from the ontology are presented,
13 http://www.alexandria.ucsb.edu/clients/gazetteer/



Fig. 3. Conceptual design for the gazetteer Web interface: search interface with input
fields for place name and type, and map for spatial restriction (a); automatic suggestion
of place types during user input (b); display of results as map overlays (c).

where the size and color of the type indicate its similarity to the suggested type
in the leftmost column. This way, there is no need for the user to know about the
underlying feature type hierarchy, as similar types are automatically suggested
by the interface. All suggestions are hyperlinked and can be moved to the input
field with a single click. Moreover, the interface also allows for spatial restriction
by simply zooming the map to the desired extent. The proposed interface thus
allows for an intuitive workflow that supports also novice users in the selection
of the appropriate feature types for a query. Apart from up-to-date Web tech-
nology, this functionality is made possible by the feature type ontology in the
background, and by the similarity server accessing it.

6 Conclusions and Further Work

Most existing similarity theories cannot be implemented as parts of semanti-
cally enabled information retrieval infrastructures because they do not support
the current standards for knowledge representations (such as OWL). In this
paper, we introduced an extended version of the SIM-DL theory [5] and its im-
plementation within an open source similarity server. The server is based on
an extended DIG interface and can hence interact with existing tools such as
reasoners and editors. An application scenario from gazetteer research demon-
strated how similarity measurement can be integrated into user interfaces and



existing geo-services. In addition one may also think of the SIM-DL server as a
web service within a geo-processing chain as realized in spatial data infrastruc-
tures. This would enable to query a Web Feature Service for all features of types
similar to Canal. As (leaving the list view aside) our approach does not include
a visualization component, the integration into ConceptVISTA may be an inter-
esting further step. The presented Protégé plug-in allows ontology engineers to
integrate similarity into their development process. For instance, similarity can
be used to examine whether a constructed ontology reflects the users view (i.e.
conceptualizations).

Further work has to focus on similarity measures for even more expressive
description logics and especially for taking modal logics into account as discussed
by Poole and Smyth [27]. While some parts of the SIM-DL theory have been eval-
uated by human subject tests (see [18]) or based on previously evaluated work
from psychology or computer science, the evaluation of the whole approach is
the next step to be done. In addition the proposed gazetteer Web interface has
to be tested against existing interfaces to determine to which degree similarity
improves interaction. Finally, while this work focuses on comparing the expres-
sions forming the examined concepts, further work should additionally focus on
the ABox. Similarity could then be measured in the style of current tableaux
algorithms.

7 Appendix

The appendix gives an overview about the involved similarity functions described
in section 3.4; for a detailed description see [5]. The sets of tuples selected by the
alignment matrix are represented by the letter S followed by an abbreviation for
the type of constructor. For instance, SI is the set of concepts on union level of
C where each Ci is formed by intersection.

simu is the weighted sum of similarities for all tuples (Ci, Dj). The weighting
ω (

∑
ωij = 1) can be either determined by the count of tuples or by analyzing

the ontological structure [5]. If the similarity of a particular tuple is 1, simu = 1.

simu(C,D) =
X

(Ci,Dj)∈SI

ωij ∗ simi(Ci, Dj) (2)

Following the ALCHQ canonical normal form (see section 3.2), eachCi (re-
spectively Dj) is an intersection of primitives or concepts formed by restrictions
or quantifications. simi is the function that determines similarity on this level as
normalized sum derived from the similarity functions for the involved construc-
tors. The normalization factor σ is defined as the sum of cardinalities derived
from the sets of compared tuples (SP , SE, SF , SMIN and SMAX).



simi(C,D) =

1

σ

0@ X
(A,B)∈SP

simp(A,B) +
X

(R,S)∈SE

sime(existsR(C), existsS(D))

+
X

(R,S)∈SF

simf (forallR(C), forallS(D)) +
X

(R,S)∈SMIN

simm(minR(C),minS(D))

+
X

(R,S)∈SMAX

simm(maxR(C),maxS(D))

1A
(3)

Primitives have no description that can be compared, hence an information
theoretic approach (comparable to the Jaccard coefficient) is used to determine
their similarity. Primitives are the more similar, the more complex concepts
(within the context) are subsumed by both.

simp(A,B) =
| {C | C < A) u (C < B)} |
| {C | C < A) t (C < B)} |

(4)

sime compares concepts formed by existential quantifications. The similarity
is the product of role and filler similarity. The second sum (see simi) is necessary
as there may be more than one existential quantification for the same role.

sime(existsR(C), existsS(D)) = simr(R,S) ∗
X

(C′
i
,D′

j
)∈SE

simu(C
′
i), D

′
j)) (5)

simf compares concepts formed by value restriction. The similarity is the
product of role and filler similarity.

simf (forallR(C), forallS(D)) = simr(R,S) ∗ simu(forallR(C), forallS(D)) (6)

The similarity (simm) between concepts formed by quantified number restric-
tions is the product of the similarities determined for the involved roles, fillers
and their maximal or minimal occurrence (cardinality). simm is used as an abbre-
viation here, in fact minimum and maximum restrictions are handled separately
(i.e. m is replaced by min respectively max). The normalization mRS(total) is
the highest maximum (respectively minimum) restriction for R or S within the
context. If one cardinality is explicitly set to 0 (while the other is not), simm = 0.

simm(mR(C),mS(D)) = simr(R,S) ∗
„

1−
| mR(C)−mS(D) |

mRS(total)

«
∗ simu(C

′
i), D

′
j)) (7)

The similarity between roles (simr) is their normalized distance within the
hierarchy. The normalization is depth-dependent to indicate that the distance
from node to node decreases with increasing depth of R and S within the hier-
archy.

simr(R,S) =
depth(lub(R,S))

depth(lub(R,S)) + edge distance(R,S)
(8)

If roles are not organized within a hierarchy but within a neighborhood, simn
is used for comparison.

simn(R,S) =
max distancen − edge distance(R,S)

max distancen

(9)
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