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Abstract—Semantic similarity measurement gained attention
over the last years as a non-standard inference service for various
kinds of knowledge representations including description logics.
Most existing similarity measures compute an undirected overall
similarity, i.e., they do not take the context of the similarity
query into account. If they do, the notion of context is usually
reduced to the selection of particular concepts for comparison
(instead of comparing all concepts within an examined ontology).
The importance of context in deriving meaningful similarity
judgments is beyond question and has been examined within
recent research. This paper argues that there are several kinds
of contexts. Each of them has its own impact on the resulting
similarity values, but also on their interpretation. To support this
view, the paper introduces definitions for the examined contexts
and illustrates their influence by example.

I. INTRODUCTION AND MOTIVATION

Semantic similarity measurement plays an increasing role
in information retrieval and organization. Beside classical
knowledge organization systems such as gazetteer services,
similarity is also used within mobile decision support systems
such as the pedestrian navigation service Utopian1. The benefit
of similarity lies in delivering a ranked list of alternatives for
the user’s query if no exact match is available. This includes
geographic feature types in case of gazetteer services as well
as alternative routes or activity recommendations for decision
support systems. One major shortcoming of computer based
similarity judgments is that the results do not necessarily
fulfill all user requirements. This is mostly caused by a
lack of context information. To compute similarity judgments
comparable to those of human users, a machine has to be
able to adjust its knowledge representation and weightings
to the user’s task. Existing similarity theories either ignore
the influence of context information or reduce the notion of
context to a restriction of the domain of discourse.

In this work, we argue that there are several context types
which have to be addressed during similarity measurement.
These contexts have impact on both the measurement process
and the later interpretation of similarity values. While some
contexts can be inferred [1] or explicitly stated by the user,
other kinds are difficult to capture. The resulting classification
is adoptable to most similarity theories, however we focus on
those developed for description logics here. The context types
proposed in this paper are relevant for similarity measurement,
for further classifications from other application and research
domains see [2]–[4].

1Software & documentation available at www.utopian-online.de

The paper is structured as follows: first, a brief overview
about similarity and context research is given. Second, the
proposed kinds of contexts are introduced in detail. Next,
their influence on similarity is demonstrated using a simplified
example from hydrology2. An extended version of the SIM-
DL plug-in for the Protégé ontology editor is introduced, to
illustrate how the proposed contexts can be integrated within
an existing reasoning infrastructure. Finally, conclusions and
directions for further work are presented.

II. RELATED WORK

This section gives a brief overview about semantic similarity
measurement and points to some recent research on context
related to similarity and description logics.

A. Semantic Similarity

The notion of similarity originated in psychology and has
been established to determine why and how entities are
grouped into categories, and why some categories are com-
parable to each other while others are not [5], [6]. The main
challenge with respect to semantic similarity measurement is
the comparison of meanings as opposed to purely structural
comparison. A language has to be specified to express the
nature of entities and functions are needed to determine how
(conceptually) close the compared entities are. While entities
can be expressed in terms of attributes, the representation of
entity types is more complex. Depending on the expressivity
of the representation language, types are specified as sets of
features, dimensions in a multidimensional space, or formal
restrictions specified on sets using various kinds of description
logics. While some representation languages have an underly-
ing formal semantics, the grounding of several representation
languages remains on the level of an informal description.

Because similarity is measured between entity types which
are representations of concepts in human minds, similarity
depends on what is said (in terms of computational rep-
resentation) about these types. This again is connected to
the chosen representation language, leading to the fact that
most similarity measures cannot be compared. Beside the
question of representation, context is another major challenge
for similarity assessments. In many cases meaningful notions

2A more sophisticated example based on a geographic feature type ontology
can be downloaded together with the SIM-DL similarity server and plug-in
at http://sim-dl.sourceforge.net.



of similarity cannot be determined without defining in respect
to what similarity is measured [6]–[8].

Several measures [9]–[11] were developed to close the gap
between ontologies described by various kinds of description
logics, and similarity theories that had not been able to handle
the expressivity of such languages.

By studying several similarity theories from information
science and their application areas, we found generic patterns
which jointly form a framework for measuring similarity
between concepts (see also [11], [12]). The framework consists
of the following five steps. Their concrete realization depends
on the semantic similarity theory and the underlying repre-
sentation language. Consequently, while some of these steps
are important for a particular theory they may play a marginal
role for another theory.

1) Selection of search concept and target concept
2) Transformation of concepts to canonical form
3) Definition of an alignment matrix to match concept

descriptors3

4) Application of constructor specific similarity functions
5) Determination of normalized overall similarity

Each of these steps is affected by context in a different way.

B. Context

As the presented paper discusses context types relevant for
similarity measurement, at first we will define context as any
kind of additional information which has impact on similarity
judgments at execution time.

In terms of similarity, the role of context has been examined
by Rodrı́guez and Egenhofer [13] for so-called feature based
measures and by Janowicz, Keßler and colleagues [8], [11],
[12], [14] for similarity measures based on various descrip-
tion logics. Turhan et al. [15] introduced a framework for
processing context information based on modeling context as
concepts using the Web Ontology Language OWL-DL. While
this approach focuses on modeling the application (domain),
other approaches (such as [1], [16]) try to come up with a
generic (top-level) context ontology. Jurisica [17] proposed a
context-based similarity theory for information retrieval using
the Similarity Query Language (SimQL).

III. KINDS OF CONTEXTS

In the following, six kinds of contexts will be introduced
and their impact on semantic similarity measurement will be
discussed in detail. The contexts will be presented in the order
they usually appear during the measurement process. While
some are best represented as sets, other kinds of contexts
are rather functions. Finally, the contexts will be applied to a
simplified measurement example to demonstrate their impact.

A. User Context

The first kind of context underlying every information
retrieval task is the user context (Cu). It describes the user’s

3The term concept descriptor is used here as placeholder for feature,
dimension, superconcept etc., which are used to describe the nature of a
particular concept.

cognitive capabilities and cultural background (CCCB), the
current environment (ENV ), and the user’s motivation (M )
for using an information retrieval system [3], [18]. There are
strong clues from cognitive science that similarity judgments
depend on previous knowledge as well as age [19]. For
instance, children tend to a perception driven similarity while
adults tend toward so-called theory driven similarity. Recent
studies from Mark and colleagues point out that similarity
also depends on cultural background and language [20]. The
influence of the user’s (comparison) environment has been
examined by Goldstone et al. [21]. Finally, one clearly needs to
distinguish between the user’s motivation and the query typed
into an information retrieval system. If a user is searching
for rivers or similar entities, this does neither answer the
question of why nor how the data will be used. While the user’s
capabilities, cultural background, environment, and motivation
influence similarity, their impact is difficult to measure (at least
from a computer science point of view).

For this reason a definition of the user context is out of
scope for this paper. Nevertheless, these aspects are crucial for
understanding the difficulties of measuring similarity arising
from context. Consequently, while we define user context
as a triple CCCB, ENV, M here, we do not state anything
about the interaction between these components or their formal
characteristics.

Cu = 〈CCCB, ENV,M〉 (1)

B. Noise and Intended Context

Based on the definition of context as additional information
influencing similarity, one has to distinguish between intended
and undesired context. We assume that noise, i.e., undesired
context, is the part of the user context that is not formally
represented within an context-aware similarity measure. The
term noise is chosen here, because this kind of context
has impact on human similarity judgments while it is not
accessible for computational similarity theories. This results in
(apparently random) deviations between human and computer
similarity judgments.

The problem of noise is especially important in case of hu-
man participants tests. For instance, while comparing pictures,
human subjects do not only use the depicted entities (intended
stimuli) for comparison, but also aspects such as the size of
the picture or background, e.g., a cloudy sky.

In contrast, intended context is what we are trying to
take into account while developing similarity theories and
reasoning services (independent of whether we are able to
catch all this information). In the following, we assume that
intended context (Cint) and noise (Cn) form a partition, such
that:

Cint = Cu \ Cn (2)

C. Application Context

Measuring semantic similarity does not end in itself, but is
used to solve a given task. As argued by Goodman [7] and
Medin et al. [6] there is no global law stating how similarity
measurement works and what it measures. In implementing



specific similarity functions, each application defines the se-
mantics of similarity (values) with respect to its application
area. We define the application context (Ca) as additional
parameters the user can pass to the application to influence
the way similarity is measured.

For instance, the asymmetric Matching Distance Similarity
Measure (MDSM) [13] allows the user to chose between a
commonality or variability weighting to elevate the role of
specific concept descriptors. In contrast, the SIM-DL theory
[11], [12] distinguishes between average and maximum sim-
ilarity and additionally allows the user to decide whether the
measure should be symmetric or not. It is also possible to
define a threshold as minimum similarity of interest. In case
of (mobile) recommendation systems, one may also think of
K.O. criteria such as a price limit or duration specified by the
user.

Consequently, the application context influences steps 3, 4
and 5 of the similarity framework introduced above. Asym-
metry is usually achieved by changing the alignment matrix,
i.e., by specifying which concept descriptors from the search
and the target concept are compared to each other (step
3). Weightings and the distinction between averaged and
maximum similarity are defined based on particular similarity
functions (step 4). The threshold is used to decide whether a
particular target concept will be presented to the user (within
the result set) and hence is part of step 5.

Beside such explicitly stated information, parts of the ap-
plication context can be inferred from the user’s behavior or
spatio-temporal constraints. Daytime and opening hours are
classical examples, but user profiles would allow for additional
information. One has to keep in mind that the limiting factor
is not how much context information can be collected about
the user’s behavior and motivation4, but whether it can be
incorporated into the similarity measure (e.g., through weights)
and whether it plays a significant role (i.e., has a clear impact
the resulting similarity judgements).

The application context is the part of the intended context
which is captured by the application. A particular similarity
service such as Utopian may take spatio-temporal aspects (and
their influence; see section III-E) into account, but fail to
support other aspects such as legal restrictions. One can argue
that computed similarity judgments correlate the better with
human judgments the better Ca approximates Cint (see also
[8]).

Ca ⊆ Cint (3)

D. Discourse Context

In a typical information retrieval scenario, the user only
defines the search concept, while the compared to (target) con-
cepts depend on the domain of discourse, e.g., the examined
ontology. The discourse context defines which concepts are
compared to the search concept (step 1 of the framework).
Along with similarity measures such as MDSM or SIM-DL,
we assume that the user is able to restrict the search to a set
of concepts by defining a context concept (Cc). This context
concept is either part of the ontology or phrased using an

4Which also raises all kinds of privacy issues.

(graphical) interface such as the SIM-DL extension [12] for the
Protégé ontology editor (see Figure 1). After reclassification,
the discourse context is the set of those target concepts which
have Cc as their least common subsumer (lcs); see [22] for
more details. Finally, the search concept is compared to each
target concept (Ct) out of the set Cd.

Cd = {Ct|Ct v Cc} (4)

The discourse context does not only define which concepts are
selected, but also influences similarity (step 4). In case of the
SIM-DL theory, all descriptors (i.e., superconcepts) defining
Cc are not taken into account to compare search and target
concept (as they appear in all Ct). This is comparable to the
variability weighting proposed by Rodrı́guez and Egenhofer
for MDSM [13]. Up to now, SIM-DL only allows for prim-
itives (and their intersections) as context concept. The usage
of arbitrary concepts would require more complex substitution
operations on DL concepts as proposed by Teege [23] (see also
[24]).

Fig. 1. Selection of search concept and discourse context (via Cc) using an
extended version the SIM-DL Protégé plug-in (compare to [12]).

E. Representation Context

While the discourse context defines which concepts are
compared, the representation context (Cr) modifies their de-
scriptors in dependence of Ca (which has influence on step 4).
This is comparable to the focus change (dressing) introduced
by Brézillon [25]. Keßler and colleagues [14] describe the
representation context as a set of rules (R). Each rule maps
from an activation condition (cond) to a set of concept
modifiers (Cm) and affected (modified) concepts (Ca).

Cr = {R1, ..., Rn} (5)

Ri : cond→ 〈{±Cm1 , ...,±Cmn
}, {Ca1 , ..., Can

}〉 (6)

If the condition for a particular rule from the representation
context is true, the rule gets activated. Every affected concept
(Cai ) is modified temporarily by either adding or removing
the concept descriptors Cmi . These descriptors are concepts
themselves; + means that they are added to the definition
of all Ca by intersection, − indicates that they are removed



from the definitions of all Ca (see [14] for further details). In
dependence of the application, a condition may be a checkbox
in an user interface, a FOL axiom or information extracted
from the user’s query (e.g., the user’s location).

While it is easy to see that modifying the concepts changes
their similarity, a quantification of this change turns out to be
difficult (see [14]). To measure the impact of the representation
context on similarity is interesting, as it would allow to infer
which parts of the context are of major importance and which
could be left aside.

F. Interpretation Context

Similarity maps compared concepts to a real number, with-
out pointing out in respect to which descriptors these concepts
differ. A similarity value (e.g., 0.67) computed between two
concepts hides most of the important information. It does
neither answer the question whether there are more or less
similar target concepts in the examined ontology. It is not
enough to know that possible similarity values range from
0 to 1 as long as their distribution is unclear. Imagine an
ontology where the least similar target concept has a value of
0.6 (compared to the source concept), while the comparison to
the most similar concept yields 0.9. In such a case, a similarity
value of 0.67 is not high at all. Beside these interpretation
problems, isolated comparison puts too much stress on the
concrete similarity value. It is hard to argue that (and why)
the result is plausible without other values as reference [17].

Consequently, measures such as SIM-DL focus on similarity
rankings. The search concept is compared to all target concepts
∈ Cd. The result is an ordered list with descending similarity
values. In general, one would not argue that certain similarity
values are cognitively plausible, but that the computed order
correlates with human ranking judgment. In this paper, we
argue that such a rating puts a single similarity value in context
- namely into the context established by the order of similarity
values. This context is called the interpretation context (Ci)
here and influences step 5 of the framework.

Ci : (Cs, Ct, simV ) ∈ ∆sim × Ca → Ψ(Cs, Ct) ∈ ∆Ψ (7)

The interpretation context maps the triple search concept (Cs),
target concept (Ct), similarity value (simV ) from the set of
measured similarities5 (∆sim) and the restrictions specified
by the application context (Ca) to an interpretation value
(Ψ(Cs, Ct)) from the domain of interpretations (∆Ψ).

Fig. 2. Partial view on the web gazetteer interface.

5between the search concept and those target concepts ∈ Cd.

In its simplest case, the domain of interpretation is formed
by ∆Ψ = {t, f}. Depending on the application area and the
remaining pairs of compared concepts from ∆sim, each triple
is either mapped to true or false. In such a case, the question
of whether search and target concepts are similar is answered
by yes or no. For the web gazetteer example proposed in [12],
similarity values are mapped to font sizes (for visualization)
using a logarithmic tag cloud algorithm (see figure 2).

One has to keep in mind, that Ci does not map an isolated
similarity value to another domain, but depends on ∆sim.
For instance, the maximum font size is always assigned to
the target concept with the highest similarity (to the search
concept), independent of a particular value.

IV. EXAMPLE

The following simplified example is intended to demonstrate
the impact of the contexts described before. While SIM-DL
and other theories are able to compute similarity between
concepts specified using expressive description logics, we
restrict this example to concepts formed by intersection (of
primitives). Five concepts from the domain of hydrography
are examined with respect to their similarity. The concepts
are specified as follows:

Concepts:
Waterbody v HydrographicFeature
Spring v HydrographicFeature
Canal vWaterbody u Linear uNavigable uManMade
River vWaterbody u Linear uNavigable u ¬ManMade
Lake vWaterbodyu¬LinearuNavigableu¬ManMade

One has to keep in mind that similarity is computed
based on representations. There are more differences and
commonalities between the introduced concepts which are
not specified here.

Discourse Context:
Cd = Waterbody

The discourse context is set to Waterbody. On the one
hand this restricts the comparisons to Canal, River and
Lake (because Spring is a HydrographicFeature but not
a Waterbody); on the other hand the concept Waterbody
has no further influence on the computed similarities.

Representation Context:
Cr = {Rf}
Rf = Flooding → (+¬Linear, {River, Canal})

The representation context consists of a rule that adds
¬Linear to River and Canal in case of flooding. Using
−Linear would only remove the primitive Linear from the
concept definitions, without explicitly stating that flooded
rivers and canals are no longer linear. As the representation
context overwrites existing definitions, adding ¬Linear does
not lead to a contradiction (i.e., an unsatisfiable concept).



Interpretation Context:
Ci : {t, f}; sim(Cs, Ct) ≥ 0.75→ t

In our example the interpretation context maps similarity
values to true, i.e., similar with respect to the user’s goal,
or false (dissimilar). For simplification, the mapping only
depends on a threshold (0.75) and every similarity value is
considered separately.

TABLE I
SIMILARITY RESULTS WITH AND WITHOUT CONTEXT.

(Cs, Ct) simdc simCd
simCr simCd+Cr

(Lake, Canal) 0.5 0.33 0.75t 0.66
(Lake, River) 0.75t 0.66 1.0t 1.0t

(Canal, River) 0.75t 0.66 0.75t 0.66

Table I shows the similarities computed for three pairs
of concepts. The first similarity value is calculated without
any context information, i.e., decontextualized (simdc). The
second similarity takes the discourse context into account
(simCd

). Similarity decreases, because the ratio between com-
mon and distinctive descriptors changes (Waterbody is not
used for comparison). The third value is computed taking the
flooding scenario into account. As Canal and River are not
longer linear, their similarity to Lake is increased. In the
second case, the linearity was the only distinctive concept
and hence similarity is 1 during flooding (with respect to
this representation). The last column is computed using both
discourse and representation context. Whether a target concept
will be displayed as alternative to the user depends on Ci and
is indicated by a small t (true) in table I.

V. IMPLEMENTATION

Based on the introduced kinds of contexts, we have extended
the Protégé plug-in for the SIM-DL similarity server [12].
As depicted in figure 1, in the first step the user selects
a search (query) concept and either specifies a context of
discourse or a certain target concept. In the following tab,
named Application Context, the user can chose between a
symmetric and a asymmetric version of the SIM-DL measure,
as well as define a threshold. Additionally, the user can decide
how to compute similarity if concept descriptions contain
logical disjunction. Using the Interpretation Context tab, three
outputs can be selected. The results can be either represented
as a descending list of similarity values (between 0 and 1),
using font size scaling or as clusters. In the last case, the user
can define the number of categories. Short descriptions for
each tab support the users by explaining the possible settings.

The integration of the representation context into the SIM-
DL plug-in is still under development and requires further
work on how to create the necessary rules. The plug-in
is developed for ontology engineers familiar with the used
vocabulary and description logics. The integration into an end-
user centric interface such as the gazetteer web interface is out
of scope for this work.

The plug-in and SIM-DL similarity server can be down-
loaded at http://sim-dl.sourceforge.net.

VI. CONCLUSIONS AND FURTHER WORK

The presented work distinguishes six types of context which
influence similarity judgments and the interpretation of single
similarity values. As for other domains, the context gap [2] be-
tween the user context and its computational representation is
also relevant for similarity measurement. While this mismatch
cannot be solved, other contexts can be used to improve the
correlation between human and machine similarity judgments.
The context information used to adjust these judgments can
be either inferred or explicitly stated by the user. Context is
more than the domain of discourse. A better understanding
of the different types of context and their influence allows
to improve the accuracy of machine based similarity ratings
and make them situation-aware. In addition, as not all context
information can be modeled, one can still examine which
information is most relevant and which could be left aside
(e.g., using context impact measures [14]). Doing so would
also help to differentiate between noise and intended context.

In case of mobile applications, certain context information
might be available only at a given time or at a given location.
This leads to the question on how to update similarity judg-
ments on-line, which relates to AI planning. How to proceed
in the absence of this information and how to interpolate or
infer it?

While first human participants tests show a significant
correlation between human and SIM-DL similarity rankings,
the same kind of testing is necessary for the proposed contexts.
This is especially important in case of the interpretation con-
text. Different applications (such as mobile decision support
systems) may require their own visualization and interpretation
of the results.

Finally, the relationship between context and similarity is
reciprocal. While this paper describes how to improve the
accuracy of machine based similarity judgments using context,
one could also infer context information out of similarity
judgments. An user of a mobile, location based service who
rates biking to be more similar to walking than to taking a
taxi, is probably not in a hurry (or has experienced rush hours
in cities such as New York; which leads back to the question
of user context and noise) [26].
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