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Abstract. In the last years, several methodologies for ontology engineering have
been proposed. Most of these methodologies guide the engineer from a first paper
draft to an implemented – mostly description logics-based – ontology. A quality as-
sessment of how accurately the resulting ontology fits the initial conceptualization
and intended application has not been proposed so far. In this paper, we investigate
the role of semantic similarity as a quality indicator. Based on similarity rankings,
our approach allows for a qualitative estimation whether the domain experts’ ini-
tial conceptualization is reflected by the developed ontology and whether it fits the
users’ application area. Our approach does not propose yet another ontology en-
gineering methodology but can be integrated into existing ones. A plug-in to the
Protégé ontology editor implementing our approach is introduced and applied to
a scenario from hydrology. The benefits and restrictions of similarity as a quality
indicator are pointed out.

Keywords. ontology engineering, semantic similarity, quality assurance, requirements
engineering, knowledge management

1. Introduction

Knowledge engineering deals with the acquisition, representation, and maintenance of
knowledge-based systems. These systems offer retrieval and reasoning capabilities to
support users in finding, interpreting, and reusing knowledge. The engineering of ontolo-
gies is a characteristic application of knowledge engineering, with ontologies as tools to
represent the acquired knowledge. Various formal languages can be used to implement
ontologies, i.e., to develop a computational representation for knowledge acquired from
domain experts. Description Logics (DL), mostly used to implement ontologies on the
Web, are a family of such languages with a special focus on reasoning services.

Answering the question how adequate the developed ontology captures the experts’
initial conceptualizations (i.e., the intended meaning at a specific point in time) as well
as the users’ intended application area is a major issue in ontology engineering. Several
methodologies offer support for knowledge acquisition and implementation, while tools
for quality assessment suitable for both the domain experts and ontology users without
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a strong background in information science are missing. This paper proposes semantic
similarity measurement as a potential quality indicator. Similarity measurement – origi-
nated in psychology – gained attention as a cognitive approach to information retrieval
[1]. Inter-concept similarity rankings obtained using the SIM-DL similarity server [2]
have been compared with human similarity rankings. Both correlate positively and sig-
nificantly, if the natural language descriptions underlying the DL concepts were shown
to the participants beforehand [3]. We therefore claim that a correlation between similar-
ity rankings obtained from experts and the computed ontology ranking indicates whether
the ontology captures the experts’ initial conceptualization (given that the developed on-
tology was implements using the experts’ input).

The paper is structured as follows. It starts with an introduction into relevant aspects
of knowledge engineering (section 2) and semantic similarity measurement (section 3).
Next, section 4 discusses the role of similarity as a quality indicator within the ontology
engineering process. The proposed approach is applied to a hydrology use case involv-
ing existing ontologies (section 5). The benefits and restrictions of our methodology are
elucidated. Finally, in section 6, conclusions and directions of further work are given.

2. Quality Assurance in Ontology Engineering

Ontologies are typically used for data annotation and integration, or to ensure interop-
erability between software components. In Ontology Driven Architectures [4], ontolo-
gies are included at different stages of the software engineering process. A systematic
approach for the development of such ontologies is required to ensure quality. Various
methodologies have been developed to accomplish a controlled and traceable engineer-
ing process. Overviews of these methodologies are given in [5]. One of the most fre-
quently applied methodologies is Methontology [5].

According to Methontology, the ontology development process can be divided into
five phases: Specification includes the identification of intended use, scope, and the re-
quired expressiveness of the underlying representation language. In the next phase (con-
ceptualization), the knowledge of the domain of interest is structured. During formal-
ization, the conceptual model, i.e., the result from the conceptualization phase, is trans-
formed into a formal model. The ontology is implemented in the next phase (implemen-
tation). Finally, maintenance involves regular updates to correct or enhance the ontolo-
gies. This paper focuses on two activities involved in this process: knowledge acquisition
and evaluation. Both are discussed in detail in the following subsections.

As illustrated in figure 1, three types of actors are involved in the development of
ontologies. The steps 1-4 and the involved actions are described in section 4.

1. Ontology users define the application-specific needs for the ontology and evalu-
ate whether the engineers’ implementation matches their requirements.

2. Domain experts contribute to and agree on the knowledge which should be im-
plemented in the ontology.

3. Ontology engineers analyze whether existing ontologies satisfy the experts’
needs or implement the experts’ conceptualization as a new ontology.
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Figure 1. Phases and activities of Methontology and their relation to the actors (modified from [5]).

2.1. Knowledge Acquisition

Knowledge acquisition already starts in the specification phase, and is essential during
the conceptualization phase [6]. Similar to software engineering, ontology engineering
involves the identification of requirements, e.g., by specifying usage scenarios with the
client. The ontology engineer is then responsible for the subsequent implementation.

Two methods can be joined to initiate knowledge acquisition. The 20-question tech-
nique [6] is a game-like approach where two persons perform a semi-structured inter-
view. An ontology engineer (as interviewer) has a particular concept in mind, and a do-
main expert has to guess the concept by asking up to 20 questions. These questions have
to be answered with Yes or No. All questions and answers are written down in protocols.
This approach has proven to reveal concepts and relations that are central to the experts’
domain [6]. Several groups need to perform these interviews to ensure suitable results.
Applying the 20-question technique multiple times per group results in a rich set of pro-
tocols used as input for subsequent steps. All concepts which can directly be extracted
from these protocols are used as starting point for a card sorting technique [7] . The
domain experts structure a set of cards, where each card represents a concept. Without
any further input they are free to order these cards. In addition, they are allowed to re-
move and to add cards. Building and naming clusters among the cards sketch the domain
view. Using the 20-question technique in conjunction with card sorting results in a set of
concepts, which can be used to generate small- to medium-sized ontologies.

Additionally, the repertory grid technique [8] can be embedded into the knowledge
acquisition. In this interview technique a person compares concepts and reasons, based
on their properties, why some concepts are similar while others are different. This rea-
soning gives information about the way a person constructs concepts. Therefore, it offers
an individual domain view of the conceptualization and answers the question why the
concepts are constructed in a certain way.
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2.2. Evaluation

Before ontologies can be released and deployed in applications, the ontology engineers
have to ensure that they meet the pre-defined quality standards. An evaluation is per-
formed in order to validate a certain ontology according to the application-specific crite-
ria [9], which can be further divided into technological, structural, conceptual, functional,
and user-oriented aspects [10].

Functional parameters, which are related to the intended use of an ontology, are
addressed by the proposed similarity-based approach. They indicate if the formalized
knowledge suits the intended purpose, and if the used formalization matches the desired
application. Accordingly, this facet of an ontology’s quality is called fitness for purpose
within this paper. Other parameters to assess fitness for purpose also include consistency,
spelling of terms, and meeting of competency questions based on usage scenarios [11,
12].

3. Semantic Similarity Measurement

Similarity originated in psychology to investigate how entities are grouped into cate-
gories, and why some categories (and their members) are comparable while others are
not [13, 14]. Similarity gained attention within the last years in computer science and
especially in research on artificial intelligence [1]. In contrast to a purely structural com-
parison, semantic similarity measures the proximity of meanings. While semantic simi-
larity can be measured on the level of individuals, concepts, or ontologies, we focus on
inter-concept similarity within this paper. In dependence of the (computational) charac-
teristics of the representation language, concepts are specified as unstructured bags of
features [15], dimensions in a multi-dimensional space [16], or set-restrictions specified
using various kinds of description logics [2, 17, 18, 19]. Besides applications in informa-
tion retrieval, similarity measures have also been used for ontology mapping and align-
ment [20, 21]. As the computational concepts are models of concepts in human minds,
similarity depends on what is said (in terms of representation) about these concepts.

While the proposed ontology evaluation approach is independent from a particular
similarity theory, we focus on the SIM-DL [2] theory here. It has been implemented as
a description logics interface (DIG) compliant semantic similarity server. In addition, a
plug-in to the Protégé ontology editor has been developed to support engineers during
similarity reasoning. The current release2 supports subsumption and similarity reasoning
up to the description logic ALCHQ, as well as the computation of the most specific
concept and least common subsumer up to ALE . A human participants test (carried out
using SIM-DL and the FTO hydrology test ontology also used within this paper) has
proven that the SIM-DL similarity rankings are positively and significantly correlated
with human similarity judgments [3].

SIM-DL, which can be seen as an extension of the measure proposed by Borgida
et al. [19], is a non-symmetric and context-aware similarity measure for information
retrieval. It compares a search concept Cs with a set of target concepts {Ct1 , ..., Ctm

}
from an ontology (or several ontologies using a shared top-level ontology). The concepts
can be specified using various kinds of expressive DL. The target concepts can either

2The release can be downloaded at http://sim-dl.sourceforge.net/. SIM-DL is free and open source software.
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be selected by hand, or derived from the context of discourse Cd [22] which is defined
as the set of concepts which are subsumed by the context concept Cc (Cd = {Ct|Ct �
Cc}). Hence, each (named) concept Ct ∈ Cd is a target concept for which the similarity
sim(Cs, Ct) is computed. Besides cutting out the set of compared concepts, Cd also
influences the resulting similarities (see [2, 22] for details).

SIM-DL compares two DL concepts in canonical form by measuring the degree of
overlap between their definitions. A high level of overlap indicates a high similarity and
vice versa. Hence, also disjoint concepts can be similar. DL concepts are specified by ap-
plying language constructors, such as intersection or existential quantification, to primi-
tive concepts and roles. Consequently, similarity is defined as a polymorphic, binary, and
real-valued function Cs × Ct → R[0,1] providing implementations for all language con-
structs offered by the used logic. The overall similarity between concepts is the normal-
ized sum of the similarities calculated for all parts (i.e., subconcepts and superconcepts,
respectively) of the concept definitions. A similarity value of 1 indicates that the com-
pared concepts cannot be differentiated, whereas 0 shows that they are not similar at all.
As SIM-DL is a non-symmetric measure, the similarity sim(Cs, Ct) is not necessarily
equal to sim(Ct, Cs). Therefore, the comparison of two concepts does not only depend
on their descriptors, but also on the direction in which both are compared.

A single similarity value (e.g., 0.67) for sim(Cs, Ct) does not answer the question
whether there are more or less similar target concepts in the examined ontology. It is not
sufficient to know that possible similarity values range from 0 to 1 as long as their dis-
tribution is unclear. Consequently, SIM-DL delivers similarity rankings SR. The result
of a similarity query is an ordered list with descending similarity values sim(Cs, Cti

).
The SIM-DL similarity server and plug-in also offer additional result representations
which are more accessible for domain experts and users. These include font-size scaling
(as known from tag-clouds) or the categorization of target concepts with respect to their
similarity to Cs [22].

4. Similarity as Quality Measure in Ontology Engineering

This section introduces semantic similarity as a potential quality indicator. Similarity
measurement does not cover all aspects of quality assurance, but rather suggests whether
an ontology reflects the domain experts’ initial conceptualization and the users’ intended
application. Consequently, semantic similarity is a candidate for assessing fitness for
purpose in ontology engineering. This section describes how the ontology engineering
process benefits from the proposed similarity-based approach, and how and where the
three types of actors are involved. Figure 2 shows the role of similarity at certain steps of
this process.

4.1. Ontology Users: Request

The ontology users request ontologies for a particular domain or application. The ontol-
ogy engineering life cycle starts (step 1) and ends (step 4) with the user. In both cases
the users’ task is to evaluate if the available ontology fits the specific purpose, e.g., if
it can be deployed in the users’ application. In step 1, the ontology users have identi-
fied the need for an ontology, and therefore initiate the ontology engineering process by
forwarding the request to domain experts.
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Figure 2. The role of similarity within the ontology engineering process.

4.2. Domain Experts: Knowledge Acquisition and Negotiation

Knowledge acquisition usually depends on domain experts as knowledge sources. Once
they receive the users’ request (step 1), the domain experts’ task is to identify the re-
quirements together with the users. The identification of scope and core concepts [5] is
part of the requirements engineering process. We suggest to extend this task with the
identification of the search concept Cs and a set of target concepts as well as the creation
of similarity rankings SRde between those concepts. These rankings will then be used
as an indicator for the quality of an ontology in terms of fitness for purpose.

Current results from the SWING project [23] show that the combination of the 20-
question technique and the card sorting method (see section 2.1) provide a way to iden-
tify search and target concepts. Five experts from the geology and quarrying domain
participated in a knowledge acquisition process. One goal of the meeting was drafting
an ontology about the transportation of aggregates. Each of the domain experts is inter-
viewed by an ontology engineer. All concepts appearing in the protocols are used for the
card sorting technique. By structuring the cards the domain experts jointly built clusters.
One cluster, named "vehicle", contained the concepts Car, Truck, Train, Bicycle,
Pipeline, Boat, and Plane. Another cluster ("transportation network") was built by the
concepts Motorway, Railroad, WaterCourse, River, Canal, Highway, Road, and
Street. The similarity-based approach to ontology evaluation can now be applied per
cluster, i.e., all concepts within a cluster are potential search and target concepts. The
concepts appearing most frequently in the 20-question protocols are likely to be most
central for the domain. Those are chosen as search concepts, all remaining concepts of
a cluster become target concepts. For the "vehicle" cluster this means Truck is selected
as Cs and all other concepts of the cluster make up the set of target concepts. Road is
selected as the search concept in the "transportation network" cluster.
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The approach to identify the core concepts for the similarity rankings, and in partic-
ular Cs, is not necessarily crucial for the similarity computation. But we assume that the
search concept as well as the target concepts are carefully selected and match the scope
of the required ontology. As similarity rankings can be calculated on concepts from sev-
eral clusters, matching the scope of even large ontologies can be fulfilled. All domain
experts propose their individual similarity ranking SRde with regard to the ontology’s
application area (step 2 in figure 2) using the identified search concept and target con-
cepts. Next, the concordance as measure of the level of agreement between the domain
experts’ similarity rankings is calculated. A high (and significant) value indicates a com-
mon understanding of the core concepts by the domain experts. If the concordance is
statistically insignificant (with respect to a pre-defined significance level) for the appli-
cation, the domain experts’ understanding of the core concepts needs to be revised (iter-
ation at step 2). The discussion needs to clarify the definitions of each concept regarding
its important characteristics. Afterwards, each domain expert performs a new similarity
ranking and the concordance of these new rankings is calculated. Step 2 is repeated until
a significant concordance between the similarity rankings is reached.

4.3. Ontology Engineers: Implementing the Experts’ Conceptualization

Once there is a significant concordance between the similarity rankings of the domain
experts, the information necessary to implement the experts’ conceptualization is passed
to the ontology engineers (this includes the protocols from the techniques introduced in
section 2.1). In addition, an averaged similarity ranking SRde is computed out of the
experts’ individual similarity rankings. This ranking becomes part of the requirements
for the ontology. After the ontology has been developed, the ranking acts as a reference
to determine whether the new ontology reflects the domain experts’ initial conceptual-
ization. Thus, the averaged ranking is used to evaluate fitness for purpose. The engi-
neers compute a similarity ranking SRoe using the SIM-DL similarity server and Protégé
plug-in (see section 3 and figure 4) for the same search and target concepts as used by
the domain experts. A significant and positive correlation between the domain experts’
and SIM-DL’s rankings indicates that the developed ontology reflects the experts’ ini-
tial conceptualization. In this case, the ontology can be passed to the ontology users for
further evaluation (again, using the proposed similarity ranking approach as depicted in
step 4 of figure 2). If the similarity rankings do not correlate (or the correlation does not
reach the pre-defined strength and significance level), an iteration in the ontology engi-
neering process becomes necessary, i.e., step 3 is repeated until the ontology reflects the
domain experts’ conceptualization. If, after several iterations, no significant correlation
is achieved, it might be necessary to return to the specification phase (step 2) to ensure
that all relevant information from this phase is available to the engineers.

Instead of developing a new ontology, the engineers can also decide to investigate an
existing ontology beforehand. In this case, the SIM-DL similarity ranking is computed
using this ontology and compared to the averaged expert ranking. This requires that
the external ontology uses the same concept names, else the engineers have to decide
whether other names used in the external ontology can be treated as synonyms for the
concepts selected by the experts. Finding synonyms may also benefit from similarity
measurement, which is not discussed here but left for further work.
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4.4. Ontology Users: Application

After passing all steps of the engineering process, the developed ontology is ready to be
deployed. Following figure 1, the ontology users are also involved in the maintenance of
the ontology. Up to now, the computed similarity ranking SRoe and the averaged similar-
ity ranking SRde provided by the domain experts are available. But even the best corre-
lation between these two rankings does not necessarily mean that the ontology match the
users’ view. With the last missing similarity ranking SRou, we compute the correlation
between the rankings SRoe from the engineered ontology and those from the users (step
4). SRou is also an averaged similarity ranking collected from the ontology users dur-
ing the maintenance phase, e.g., using questionnaires or user feedback techniques built
into the software. The knowledge and therefore also the conceptualization of a particular
domain can evolve over time, which means this step has to be performed regularly.

If a significant correlation between SRou and SRoe exists and does not change over
time, it can be assumed that the ontology represents the users’ view with respect to the
application. A low correlation between SRou and SRoe might imply that the ontology
does, in its current state, not satisfy the users’ needs. Re-initiating the ontology engineer-
ing life cycle, including the users’ similarity rankings, is advisable.

5. Application

This section applies the steps described in section 4 to a set of concepts from four dif-
ferent ontologies to demonstrate our approach. The similarity between these concepts is
measured and the resulting ranking is compared to a similarity ranking defined by the
authors of this paper acting as domain experts and users, respectively. The concepts and
ontologies were chosen to elucidate selected aspects of similarity as a quality indicator.
An evaluation involving external domain experts and ontology engineers is left for fur-
ther work. The used ontologies are excerpts of the hydrology ontology from Ordnance
Survey OS Hydrology3, a (OWL-Lite) version of the Alexandria Digital Gazetteer Fea-
ture Type Thesaurus ADL FTT4, the AKTiveSA ontology5, and the Feature Type Ontol-
ogy FTO Hydrology6 developed by the authors for the human participants test described
by Janowicz et al. [3]. Figure 3 gives a brief overview over the hydrological concepts
within these ontologies; interested readers are referred to the online OWL versions.

In the following we assume that users of a specific hydrology application such as a
decision support system for an agency request an ontology. Domain experts analyze the
users’ requirements and identify core concepts for the new hydrology ontology using the
20-question and card sorting technique. The resulting core concepts are Canal, as search
concept, and River, Lake, IrrigationCanal, Ocean, Reservoir, and OffshorePlatform as
target concepts.

After deciding on the core concepts, and negotiation how these concepts should be
specified, each domain expert defines a similarity ranking to express her initial concep-
tualization. All rankings are performed independently and afterwards compared for con-

3http://www.ordnancesurvey.co.uk/oswebsite/ontology/
4http://ifgi.uni-muenster.de/ janowicz/downloads/FTT-v01.owl
5http://www.edefence.org/ ps/aktivesa/OntoWeb/index.htm
6http://sim-dl.sourceforge.net/downloads/
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Figure 3. Overview of the four ontologies used for similarity measurement.

cordance using Kendall’s coefficient of concordance W as measure of the level of agree-
ment between the domain experts. In case of the authors’ rankings this yields W = 0.77,
which is a statistically significant result (using a significance level of 0.05).

The averaged similarity ranking by the domain experts is passed on to both the
users and the ontology engineers. The users might refine the requirements if the domain
experts’ rankings do not match the users’ expectations. The ontology engineers use these
rankings for later verification of the implemented ontologies. The computed similarity
rankings are then compared with those produced by the domain experts.

To measure similarity and compare the resulting rankings for correlation, the SIM-
DL similarity server is used in conjunction with an extended version of the Protégé sim-
ilarity plug-in. As depicted in figure 4 the extension offers a tab for estimating the simi-
larity between the search and the target concepts using sliders. The resulting ranking and
the similarity values are compared to the results obtained from the SIM-DL server.

The Protégé extension shown in figure 4 not only allows for specifying a ranking of
concepts, but also for expressing a quantitative distance between these concepts. How-
ever, different people (i.e., domain experts) use different (cognitive) similarity scales and
distributions [3]. Hence, the interpretation of the absolute similarity values and distances
between them is difficult. Consequently, this paper focuses on similarity rankings.

The FTO Hydrology ontology is supposed to be the ontology developed by the ontol-
ogy engineers based on the experts’ conceptualization. Figure 4 shows the resulting chart
and correlation based on the averaged similarity ranking of the experts and the results
computed by SIM-DL for the FTO Hydrology ontology. As shown in table 1, there is a
positive (rs = 0.94) and significant (p < 0.05) correlation between both rankings. These
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Table 1. Similarity rankings for the used ontologies with respect to Canal as search concept.
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Experts’ Ranking 1 2 4 3 5 6 —
ADL FTT Ranking 3 1 2 3 3 2 0.06
OS Hydrology Ranking 3 1 4 2 4� — 0.67
FTO Hydrology Ranking 1 2 3 4 5 6 0.94
AKTiveSA Ranking 1 — 2 2 3 — 0.95

�: Spearman’s rank correlation rs measured to the experts’ averaged ranking.
�: The concept Sea is used as no concept named Ocean is available in the ontology.

results indicate that the FTO Hydrology ontology reflects the experts’ conceptualization.
The ontology is then passed to the users for further evaluation.

The users evaluate the received ontology using their similarity rankings in order to
investigate if the ontology can be deployed into the final hydrology application. Other-
wise, the users can initiate a new iteration cycle starting again with the domain experts.

Figure 4. The extended SIM-DL Protégé plug-in with the new estimation tab (compare to [2, 22]).

It is reasonable to assume that ontology engineers first check for existing external
ontologies before developing a new one. They compare the SRde ranking of the experts
with those from the external ontologies (in our case the ADL FTT, OS Hydrology, and
AKTiveSA ontologies) to evaluate their fitness for purpose.

Unlike the self-engineered FTO Hydrology ontology, table 1 shows that the ranking
obtained from the ADL FTT ontology does not correlate with the experts’ ranking. For
instance, the ADL FTT concept offshore platforms is ranked in second place, and hence
above rivers. This can be explained with the single-inheritance structure used within this
ontology, i.e., a concept cannot be a direct subconcept of two different concepts. As a
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consequence, the top-level distinction between hydrographic features and manmade fea-
tures, and the definition of the concept hydrographic structures as a subclass of man-
made features, implies that all concepts classified as hydrographic structures are consid-
ered manmade, but not hydrographic features (see figure 3). As the ADL FTT ontology
was derived from automatically parsing the thesaurus, the subsumption relationship is
the only one which could be used to measure conceptual overlap (and hence similarity).
Consequently, the similarity between concepts which are not beneath a common super-
concept (such as canals and rivers) is low. In contrast, sharing the same superconcept
increases similarity as for canals and offshore platforms. Both are hydrographic struc-
tures7 and manmade features. Such view does not reflect the experts’ initial conceptu-
alization, and therefore the ontology cannot be used for the hydrology application (or
requires substantial modification).

A test run for the second external ontology, an excerpt from OS Hydrology, shows a
positive (rs = 0.67) but insignificant correlation to the experts’ ranking. This is due to
several reasons: first, the concepts OffshorePlatform and Ocean are not part of this ontol-
ogy which decreases the number of ranked concepts decisively. Second, the implemented
concepts do not meet the experts’ conceptualization. As described in section 4.3 the OS
Hydrology concept Sea is chosen as potential alternative for Ocean within this example.
The surprising result that Lake is more similar to Canal than River can be explained as
follows. First, while River, Lake, Sea, and Reservoir are subconcepts of BodyOfWater,
Canal and IrrigationCanal are not (see figure 3). However, there is a subconcept of Body-
OfWater called Canal.Water that comprises some of the intended characteristics missing
in Canal (e.g., being navigable). Second, in contrast to Canal and Lake, the definition of
River does not contain a value restriction for being connected to other bodies of water.

The AKTiveSA ontology represents the case where a high correlation (rs = 0.95) in-
dicates that the concepts reflect the experts’ conceptualization. However, not all concepts
are defined in the ontology, and hence the correlation is statistically insignificant. No can-
didate concepts for OffshorePlatform and IrrigationCanal were found. In this case, the
engineers can decide to extend the ontology with the missing concepts and recalculate
the correlation.

Summing up, the application of similarity as quality indicator points to the follow-
ing benefits and shortcomings. Similarity helps to assess if developed ontologies reflect
the intended conceptualizations of experts and users. Simplicity is a desired prerequisite
for an evaluation method in order to be adopted by non-technical experts. As similarity
is grounded in cognition, the cognitive effort imposed on actors to produce similarity
rankings is low. This is especially important for non-technical domain experts and end-
users lacking formal background on description logics. Therefore, similarity rankings
provide the engineer with the possibility to integrate the users and experts during the im-
plementation phase. SIM-DL compares concepts for overlapping definitions. This does
not guarantee that these definitions are relevant for the particular application. For an ex-
ternal ontology this may cause a correlating similarity ranking, although the definitions
focus on other applications (such as recreation instead of navigation). Therefore, SIM-
DL allows to set the context of discourse (see section 4.3) to enforce particular concept
definitions. Finally, similarity does not answer the question how concepts differ. To im-
prove the expressivity of similarity as quality indicator, it should therefore be combined
with difference operations as proposed by Teege [24].

7Which is surprising as the thesaurus defines hydrographic structure as “constructed bodies of water”.
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6. Conclusions and Further Work

Ontology engineering and similarity reasoning have only been remote cousins so far.
We have shown in this paper that semantic similarity rankings founded in formal ontol-
ogy can support the ontology engineering process. In particular, they serve as measures
for how accurately an ontology matches the conceptualizations held by ontology engi-
neers and users. Our approach is orthogonal to ontology engineering methods and can
be incorporated into any of them. The contributed plug-in to the Protégé ontology editor
serves this purpose and has been successfully tested in a scenario with hydrological in-
formation. While we focused on the simplified hydrology example here, a more sophisti-
cated scenario from quarry mining involving external domain experts and users is under
development in the SWING project (see section 4.2).

Our main contribution is toward the problem of quality assurance for information
system ontologies. The simple idea to compare similarity rankings of concept specifica-
tions in natural language (produced by domain experts or users) with those of concept
specifications in DL (produced by ontology engineers) represents an effective way of
assessing how closely the stated constraints on meaning match the intended meaning.

Our method is rooted in formal ontology, as the semantic similarity rankings are
based on a similarity theory that accounts for concept specifications instead of a purely
syntactical measure. The similarity theory and its application have been developed with
theoretical foundations in psychological literature on similarity and the logics to express
them. All similarity measures crucially depend on the representation chosen for the com-
pared concepts. A solid grounding in formal ontology can therefore be expected to im-
prove the match between human and computational similarity rankings. This has been
shown to be the case by Janowicz [3]. In this paper, we have used a non-symmetric sim-
ilarity measure. SIM-DL also supports symmetric similarity; further work should inves-
tigate which approach fits better for quality assessment.

Beyond the formal foundations, the iterative engineering model involving three ac-
tors (domain expert, knowledge engineer, user) represents a way toward more realistic
knowledge acquisition and management scenarios. The social nature of these processes,
particularly the fact that specifications of conceptualizations are negotiated among the
participants, is ideally supported by a concise and transparent quality measure (which is
also easy to use) such as the match between similarity rankings.

From a formal ontology point of view, a benefit of our approach is that it can reveal
incomplete concept definitions. For instance, in AKTiveSA, canals differ from other bod-
ies of water by also being transportation routes. Length is a characteristic of transporta-
tion routes, but not automatically of rivers, since it does not apply to all bodies of water.
The lacking length of rivers has a negative impact on the similarity value of Canal to
River. It indicates to the ontology engineer that, from a certain perspective, the ontology
is incomplete or inhomogeneous.
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